
Mappings between C# and UML elements

In class diagrams, Unified Modeling Language (UML) notation is used to represent C# and CTS
elements, the fields and methods that comprise an element, and the relationships between C#
elements.

Class diagrams represent not only C# classes, but other C# elements such as structs, enums, and
delegates.

A stereotype is an extension mechanism that broadens the vocabulary of the UML and gives more
specific meaning to a C# class and other elements.

The following table summarizes the mapping between C# elements and UML elements in class
diagrams.

Table 1.

.NET elements UML elements

File Artifact with a «C# File» or «.NET Assembly File»
stereotype.

Folder Artifact with a «C# Folder» stereotype.

Namespace Package with a «C# Namespace» stereotype and the
namespace icon.

Class Class with the «C# Class» stereotype.

Enum Enumeration with or without an «C# enumeration»
stereotype.

Struct Class with «C# Struct» stereotype and class icon.

Interface Interface with the interface icon.

Partial class Class with a «C# Partial Class» stereotype.

Partial interface Interface with a «C# Partial Interface» stereotype.

Delegate Class with a «C# Delegate» stereotype. The invocation
method and its signature are mapped using a UML
operation within this class. The name of this operation is
the same as the class. Its signature is the signature of the
delegate. By default, this delegate class will derive from
System.Delegate or System.MultiCastDelegate.

Member field Property. Depending on user preferences, an association
for non-primitive types also is created. The diagrams
support showing properties as associations without the
association needing to be explicitly created.

The Eclipse icon or the UML visibility icon will be shown
depending upon the user’s preference.

Event This is modeled like a member field, but with an «C#
Event» stereotype.

Indexer This is modeled like a member field, but with an «C#
Indexer» stereotype.

Property This is modeled like a member field, but with a «C#
Property» stereotype. Each property has accessors that
can be explicitly modeled as operations with the «get» and
«set» stereotypes.

Methods Operation.

The Eclipse icon or the UML visibility icon is shown
depending upon the user’s preference.

Note: C# static methods can be visualized, but
cannot be added to diagrams.

Page 1 of 2Mappings between C# and UML elements

29-01-2008http://publib.boulder.ibm.com/infocenter/rsdhelp/v7r0m0/topic/com.ibm.xtools.viz.do...

Note: The name of the stereotype is based on whether the element is a C# element or
a .NET Assembly element. The stereotypes in the table above specify only the C# form. For
example, a visualized namespace can have the following stereotypes:

� <<.NET Assembly Namespace>>

The namespace is from the .NET assembly.

� <<C# Namespace>>

The namespace is from a C# file.

� Value parameters
� Reference parameters,

declared with ref modifier
� Output parameters,

declared with out modifier
� Parameter arrays,

declared with the params
modifier

� Parameter with direction [in].
� Parameter with direction [inout].
� Parameter with direction [out].
� Parameter with multiplicity set to “*” to indicate a

single dimension array.

Attributes Class with an «C# Attribute» stereotype. This comes with
a property, “AttributeUsage,” that should be set to the
usage string.

Attributes are specified in free form text within the
documentation view of the corresponding UML element of
each attribute target. The complete string within the square
brackets “[]” is specified in the documentation view. Valid
attribute targets are assembly, event, field, method,
param, property, returntype, typevar.

Generics Generics map to UML template parameters. Classes,
structs, interfaces and methods can be parameterized.
These map to parameterized UML classes, parameterized
UML classes with a «struct» stereotype, parameterized
UML interfaces and parameterized UML operations,
respectively.

Nullable types Nullable types for a predefined type map to UML primitive
types with the same name. Nullable types for other value
types are mapped to a UML class with the «nullable»
stereotype applied, named as the base value type and a
UML substitution relationship existing from the UML lass to
the UML type representing the base value type.

Accessibility (public, private,
protected, internal, protected
internal)

For classes, attributes, and operations the accessibility
maps to a visibility or keyword property of the same name.

Page 2 of 2Mappings between C# and UML elements

29-01-2008http://publib.boulder.ibm.com/infocenter/rsdhelp/v7r0m0/topic/com.ibm.xtools.viz.do...

