
Master Thesis
Technical Information Technology / Software Engineering

Coupling Overture to MDA and UML

by

Kenneth G. Lausdahl
Hans Kristian A. Lintrup

Supervisor: Peter Gorm Larsen

Aarhus, December 2008

Student Student Supervisor

Hans Kristian A. Lintrup Kenneth G. Lausdahl Peter Gorm Larsen

Contents

1 Introduction 9
1.1 The formal method . 9
1.2 The informal method . 10
1.3 Model transformation . 10
1.4 Participation in the Overture Project 11
1.5 Thesis Goal . 12
1.6 Reading Guidelines . 13
1.7 Related Work . 14
1.8 Outline of the Thesis . 15

1.8.1 Quick Overview of the Thesis 16
1.8.2 Thorough Exposition of the Thesis 16

2 UML 19
2.1 History of UML . 19
2.2 UML Usage . 20

2.2.1 KLEIN+STEKL GmbH . 20
2.2.2 Borland Together Control Center 20
2.2.3 Telelogic Rhapsody . 21

2.3 The UML Meta-model . 21
2.4 Choosing versions of UML for comparison 23
2.5 UML 1 . 23

2.5.1 Class Diagram . 24
2.5.2 Sequence Diagram . 29
2.5.3 Rose-VDM++ Link . 31

2.6 UML 2 . 36
2.6.1 Class Diagram . 36
2.6.2 Sequence Diagram . 37

2.7 Tool support for XML Metadata Interchange (XMI) 40
2.7.1 XMI incompatibilities between UML modeling tools 40
2.7.2 Limitation of Sequence Diagrams in XMI 41

i

ii CONTENTS

3 VDM 43
3.1 History of VDM . 43
3.2 VDM Usage . 44

3.2.1 Banknote Processing . 44
3.2.2 VDMTools . 45
3.2.3 ISEPUMS . 45
3.2.4 A Mission Critical Data Handling Subsystem 45

3.3 Tool support . 46
3.4 VDM Classes . 47
3.5 Types . 48
3.6 Test Trace . 49
3.7 Trace Example . 52

4 Static Model Transformation 53
4.1 Classes . 53
4.2 Visibility . 53
4.3 Data types . 54
4.4 Instance variables and values . 55
4.5 Union Types . 57
4.6 Product Types . 57
4.7 Collections . 58
4.8 Relationships . 61
4.9 Thread . 62
4.10 Generalization . 63
4.11 Abstract . 63
4.12 Generic classes . 64
4.13 Operations and Functions . 65

5 Static Model Specification 67
5.1 Abstract Syntax Tree . 67

5.1.1 AST definition to VDM class structure (ASTGen) 67
5.1.2 OML AST . 70
5.1.3 UML AST . 71

5.2 Transformation Specification Overview 72
5.3 The Transformation Process . 73
5.4 Transforming VDM to UML . 75
5.5 UML Model to XMI . 82

5.5.1 XML parser / deparser . 84
5.6 Transforming UML to VDM . 84
5.7 Merging Changes in VDM and UML Models 87

6 Interaction Model Transformation 89

CONTENTS iii

6.1 VDM traces and UML sequence diagrams 90
6.2 Transformation Rules . 91

6.2.1 Trace placement . 91
6.2.2 Trace name . 93
6.2.3 Trace Apply Expression . 93
6.2.4 Sequencing of trace apply expressions 94
6.2.5 Trace choice operator . 95
6.2.6 Repeat Pattern for apply expressions 95
6.2.7 Nested sequencing messages 96

7 Interaction Model Specification 99
7.1 Subset of UML AST in relation to sequence diagrams 99
7.2 Transformation Specification Overview 100
7.3 Transforming UML SD to VDM Trace 102

7.3.1 Summary of traces specification 108

8 Transformation implementation 109
8.1 Testing . 109

8.1.1 Script testing . 110
8.1.2 Unit test . 110

8.2 Java code-generator for VDM . 111
8.3 Integrating UML in Overture Tool . 111

8.3.1 Development of the UML Plug-in 113
8.3.2 Deployment of the Plug-in . 113

9 Concluding Remarks 115
9.1 Achieved Results . 115

9.1.1 Learning outcome . 115
9.1.2 Concrete achievements . 116

9.2 Future Work . 119
9.3 Overall Conclusion . 120

A Overture Workshop 5 in Braga Portugal 133
A.1 Participation in Workshop . 133
A.2 What did we gain from the Workshop 133
A.3 Workshop conclusion . 134

B Omitted UML 1 Constructs 135
B.1 Association . 135
B.2 Dependency . 136
B.3 Derived Element . 136
B.4 Package and subsystem . 136
B.5 Association Class . 136

iv CONTENTS

B.6 Interface . 137
B.7 Realization . 138
B.8 Attributes of metaclass Class . 138
B.9 Concurrency . 139
B.10 DataType . 139

C Omitted UML 2 Constructs 141
C.1 Internal Structure of a Class . 141
C.2 Message kind . 141

C.2.1 Part decomposition . 142
C.3 Fragment . 143

C.3.1 ConsiderIgnore Fragment . 144
C.3.2 InteractionUse . 145

D Significant changes to the UML meta-model 147
D.1 Deprecated UML 1 meta-classes . 147
D.2 New UML 2 meta-classes . 148

E Specification of the UML Abstract Representation 149
E.1 Class Diagram . 150

E.1.1 Model and ModelElement . 150
E.1.2 Class . 150
E.1.3 Type . 153
E.1.4 Association . 154
E.1.5 Constraint and ValueSpecification 154

E.2 Sequence Diagram . 155
E.2.1 Collaboration . 155
E.2.2 LifeLine . 156
E.2.3 InteractionFragment . 156
E.2.4 Message . 159

E.3 UML Specification Citations . 160

F Model coverage 163
F.1 Transforming from VDM to UML . 163

F.1.1 Transformation from VDM to UML (Vdm2Uml) 163
F.1.2 VDM to UML type converter (Vdm2UmlType) 178
F.1.3 Serilize the UML AST to XMI with EA support (Uml2XmiEAxml)182

F.2 Transforming UML to VDM . 199
F.2.1 Convert XMI to a UML model (Xml2UmlModel) 199
F.2.2 Transform UML to VDM (Uml2Vdm)) 215

F.3 OML AST to VDM files printer . 232
F.3.1 Proxy for printer (Oml2Vpp) 232

CONTENTS v

F.3.2 Visitor for OML which implements a printer for source files
(Oml2VppVisitor) . 233

G OML AST 253

H UML AST 277

I Features supported by Transformation 283

List of Symbols and Abbreviations 285

Abstract

It is vital that critical software systems perform as intended. An effective way to min-
imize the risk of unforeseen surprises in a system is to create a model of the system’s
critical parts. VDM++ is an OO modeling language used to validate and verify the de-
sign of software systems at a desired level of abstraction. VDMTools is a toolset which
offers various features to support software development based on VDM and its prede-
cessor, VDM-SL. Among the features offered by VDMTools, is the Rose-VDM++ Link
which enables going back and forth between VDM++ model and UML version 1.1. This
M.Sc. thesis presents an analysis of the additional possibilities offered by UML version
2. The results of this are materialized as an extension of the Overture project which is
a community-based project dedicated to the development of the next generation of tools
supporting formal modeling and analysis in the design of software systems. We have
developed a counterpart to the Rose-VDM++ Link, i.e. a tool for going back and forth
between VDM++ models and UML 2.0 Class Diagrams and Sequence Diagrams.

1

Resumé

Det er afgørende, at kritiske software systemer fungerer som tilsigtet. En effektiv måde
at minimere risikoen for uforudsete overraskelser i et system er at skabe en model af
systemets kritiske dele. VDM++ er et OO modelingssprog, som bruges til at validere
og verifikere designet af software systemer pået ønsket abstraktionsniveau. VDMTools
er et sæt af værktøjer, der understøtter udvikling af software baseret påVDM++ og dets
forgænger, VDM-SL. Blandt de funktioner, der tilbydes af VDMTools, er Rose-VDM++
Link, der giver mulighed for at transformere mellem VDM++ modeller og UML 1.1
klassediagrammer. Denne M.Sc. afhandling præsenterer en undersøgelse af de ekstra
muligheder, som UML version 2 tilbyder. Resultaterne indgår som en udvidelse af pro-
jektet Overture, som er en community-baseret projekt dedikeret til udviklingen af den
næste generation af værktøjer, der understøtter formel modellering og analyse af soft-
ware systemer. Vi har udviklet et modstykke til Rose-VDM++ Link, mere præcist et
værktøj, som kan transformere mellem VDM++ modeller og UML 2.0 klassediagram-
mer og sekvensdiagrammer.

3

Acknowledgements

First of all, we would like to thank our supervisor, Professor Peter Gorm Larsen, for the
professional and personal support during this thesis work. His dedication is remarkable
and has resulted in correspondence both day and night regarding this thesis. At no
point during the writing of this thesis has Peter been absent when needed. His support
and guidance is second to none, both personally and professionally. Secondly, a warm
thank you goes to Nokia, Sony/FeliCa Networks and Shin Sahara who sponsored our
travel expenses, which enabled both of us to participate in the fifth Overture Workshop
in Braga, Portugal. Thank you very much for that. Thirdly, Marcel Verhoef deserves
thanks for sharing his knowledge regarding the Overture project and its tools. Fourthly,
we would like to express our appreciation to Nick Battle for his continuous interest in
our thesis work regarding VDMJ. Nick was extremely quick to resolve the deficiencies
we discovered. We have not had direct relations to the last person whom we want to
thank, however, he has been a valuable help during the construction of our VDM++
model. When we encountered a bug in VDMTools, we submitted a bug-report. Shin
Sahara heads the development of VDMTools and one of his staff members, Dr. K, is the
person who has agreed to fix a number of the bugs encountered by us.

5

Prerequisites

It is expected that the reader is able to read basic formal models written in VDM++
and possess base knowledge about UML class diagrams and sequence diagrams. For
simplicity, we refer to VDM++ as VDM in the rest of this thesis.

7

Chapter 1

Introduction

Between 1985 and 1987, the radiation therapy machine Therac-25 was responsible for
at least six accidents in which patients were given massive overdoses of radiation, ap-
proximately 100 times the intended dose. Three of the six patients died [Therac25].

Such an accident highlights the danger of software control of safety-critical systems.
Formal methods (FM) mitigate the risk of a system malfunction, like Therac-25, by
increasing the confidence in a computer system by formal verification of the systems
specification. Hence it is interesting to investigate how to spread the use of FM.

This thesis investigates the possibility of combining an FM with an informal graph-
ical modeling language. The topic is well-known in the literature and is referred to as
model transformation [Kim&05, Snook&06, Dascalu&02, Laleau00].

The use of FM stem from the fact that software is notorious for being late in delivery
and unpredictable and unreliable in operation. The expectation is that proper mathemat-
ical analysis can contribute to the reliability and robustness of a design [Holloway97].
However, developers are reluctant to devote themselves to FM. Suggestions listed by
Holloway regarding the antipathy against FM includes, but are not limited to, the fol-
lowing [Holloway97, p1]:

1. Lack of adequate tools [Knight&97, p1].

2. High costs, and over-selling by advocates [Meyer97, p1] [Saiedian96, p2].

It is the hope, that this thesis work will contribute to the spread of FM by mitigating
the two causes mentioned above. In particular, the ambition is that tool support for a
specific FM will be improved with reduced cost, as a result of this work.

1.1 The formal method

The FM chosen for this thesis is the Vienna Development Method extended with object-
oriented capabilities (VDM++) [Fitzgerald&05]. VDM++ is one of the oldest and most

9

10 CHAPTER 1. INTRODUCTION

mature formal languages available [Fitzgerald&08a, Plat&92]. VDM++ is an extension
of the specification language VDM-SL, thus a VDM++ model can be formally validated
and verified by using a set of tools [Fitzgerald&08a]. A VDM++ model specifies the
behavior of a system by encapsulating system behavior in classes, as known from the
object-oriented world. Recently, a new construct for improving model testing has been
introduced. This new feature called trace statements makes it easier to specify regression
tests [Santos08, LangManPPTraces]. The new traces feature, together with VDM++,
are interesting to take into account when performing a transformation to and from an
informal method.

1.2 The informal method

The chosen graphical modeling language is the Unified Modeling Language (UML)
[UMLSuperstructure2.1.2]. UML is widely used in the industry [UMLSuccess].

UML is great for presenting and discussing models due to its visual capabilities, i.e.
different structural and behavioral views of a system. Of the different views, Class Di-
agrams and Sequence Diagrams are of particular interest to our work. One of the main
disadvantages, however, is the level of formalism that can be obtained, since UML has
no commonly agreed mathematical basis. However, the reason for that is the significant
complexity it would add with no clear benefit [UMLInfrastructure2.1.2, p33]. VDM++
has a level of mathematical precision but it is not great for presenting or discussing a
model to computer science novices, e.g. management or customers, or to developers
unfamiliar with FM. A link between VDM++ and UML yields the best of both worlds
[Dascalu&02, Kim&05], i.e. the formal specification of VDM++ becomes easier to ap-
ply and the informal language UML becomes more precise [Dascalu&02, Kim&05].

UML is designed to model object-oriented systems [UMLFromWikipedia], hence
overall similarities do exist between VDM++ and UML. A careful analysis of the lan-
guages will determine the mapping potential between them.

1.3 Model transformation

If a mapping potential exists between VDM++ and UML, detailed knowledge of the
semantics of the languages involved must be obtained in order to know:

• On what semantic basis the transformation has occurred

• Whether semantics are preserved during a transformation (soundness), and

• whether the transformation is complete [Kim&05, Sendall&03].

[Sendall&03] identifies meta-modeling as a common technique for defining the ab-
stract syntax of models and the relationships between model elements. This thesis adopts
that approach. The abstract syntax for VDM++ was available by the open-source project

1.4. PARTICIPATION IN THE OVERTURE PROJECT 11

Overture [OvertureTool] at the time this thesis work began. The definition of an abstract
syntax for UML is made as a part of this thesis.

Once the abstract syntaxes exist at the same level of abstraction, it is possible to
define transformation rules for the meta-model constructs of each language. The rules
are first formulated in natural language, and secondly specified in a formal language
in order to be validated and verified. Ultimately, the rules must be implemented and
compiled to some executable form in order to act as a tool.

In this regard, VDM++ is interesting because VDM++ models may be executed and
debugged directly on the specification level [Fitzgerald&08a]. A VDM++ model of the
model transformation will allow developers to abstract away parts not directly related
to the core functionality. Also, a VDM++ model may be subject to syntax checking,
type checking and integrity checking to increase confidence in the correctness of the
model [Fitzgerald&08a].

1.4 Participation in the Overture Project

The Overture project is an open source project led by a core team, who discusses and
plans development of the Overture project. The aim is to enable better tool support for
VDM++. Currently, the most feature-rich tool available is a commercial tool, VDM-
Tools, which include features like syntax- and type-check, code-generation etc.

A model has been created to enable transformation between the abstract syntax of
VDM++ and the abstract syntax of UML. The model utilizes a variety of VDM++ con-
structs and due to the large amount of classes, VDMTools becomes significantly slow
when interpreting the model. This brought to our attention VDMJ [Fujitsu] developed
by Nick Battle at Fujitsu. VDMJ is a console-based type-checker and interpreter which
is roughly twice as fast as VDMTools. During the project close cooperation with Nick
Battle has been maintained to test and further develop VDMJ. Additionally, to the devel-
opment of VDMJ, we participated in the Overture project by means of net-meetings and
we attended the fifth Overture Workshop at the University of Minho in Braga, Portugal.
One of the main topics at the workshop was integrating various existing tools into a sin-
gle workspace and to discuss how to integrate these tools in a single Eclipse platform.
The solution for arranging all existing tools was to use Maven. However, Maven did not
know how VDMTools projects are structured, hence a VDMTools plug-in for Maven
was required.

We contributed with a presentation of the challenges and expected outcome of this
thesis and we started the development of a VDMTools plug-in for Maven, which pro-
vided a solid starting point for further development.

12 CHAPTER 1. INTRODUCTION

1.5 Thesis Goal

The primary goal of this thesis is to investigate the mapping potential between VDM++
and UML. More specifically, this thesis will uncover the mapping potential between:

• VDM++ models and UML 2 Class Diagrams, and

• VDM++ traces and UML 2 Sequence Diagrams

To accomplish the abovementioned, it is necessary to conduct a syntax and seman-
tics analysis of both VDM++ and UML. The analysis will determine a number of lan-
guage constructs which can be transformed with their semantics maintained. The second
goal of this thesis is to formulate bidirectional transformation rules for each identified
language construct. The rules must be stated in natural language and subsequently be
defined formally using VDM++. Once the rules have been formally defined, the ambi-
tion is to develop a prototype of a transformation tool incorporating the formally defined
rules.

The output of the prototype must comply with the concrete syntaxes of VDM++ and
UML, to enable importing the output into existing tools (i.e. an existing UML tool should
be able to import the output of a VDM++ to UML transformation). To accomplish that
regarding UML, it is necessary to first investigate the existing standard for UML diagram
exchange by the Object Management Group (OMG), and secondly to explore to which
degree various UML tool vendors adhere to the standard. In addition, the concrete syntax
of VDM++ must be examined to produce correctly formatted output.

To summarize, the subgoals of this thesis are:

UML 1 and UML 2: To investigate the UML specifications, i.e. syntax and semantics
of UML 1 and UML 2.

VDM++: To examine the VDM++ syntax and semantics, including the new traces
definitions [Santos08].

Mapping potential: To determine the mapping potential between VDM++ and UML
in terms of language constructs which can maintain their semantics during a trans-
formation.

Transformation rules: To formulate in natural language a collection of bidirectional
transformation rules for each language construct, i.e. one rule for each direction
(VDM++ and UML roundtrip). The rules must subsequently be formally specified
in VDM++.

Diagram exchange standard: To investigate the OMG standard for diagram exchange
in order to represent a UML model correctly.

Prototype: To develop a model of the model transformation using VDM++. The pro-
totype will assist to ascertain the level of correctness of the transformation rules.

1.6. READING GUIDELINES 13

In addition, the prototype will assist in uncovering whether existing UML tools
adhere to the diagram exchange standard.

1.6 Reading Guidelines

In order to ease the reading process commonly used illustration principles are shown
below along with a short description of what they present. In addition, please notice that
the page numbers given in citations of articles, correspond to pages

Below is a description of how different types of models and source code are dis-
played and how names or keywords from within this models /source illustrations are
shown:

Keyword: bool are shown in boldface.

References to names in models /source code are shown without boldface getValue.

Representation box of a VDM model:�
1 class SensorController

2 thread
3 while true do
4 skip;
5 end SensorController
� �

Listing 1.1: Example of VDM.

Representation box of an AST:

TemplateParameter ::

name : seq of char;

Listing 1.2: Example of an AST

Representation box of a XML files:�
1 <xmi:Extension extender="Enterprise Architect" extenderID="6.5">

2 </xmi:Extension>� �
Listing 1.3: Example of XMI/XML.

Representation of a transformation rule:

Transformation Rule 1
VDM classes are mapped as the UML meta-class Class

14 CHAPTER 1. INTRODUCTION

Connection between two items at different levels:

�
1 class SensorController

2 thread
3 while true do
4 skip;
5 end SensorController
� �

Listing 1.4: A VDM class with a thread
definition. Figure 1.1: A UML Active class.

1.7 Related Work

The idea of combining formal and informal languages to exploit the best of both worlds
[Dascalu&02, Kim&05, RoseMan] have been investigated by others before. Common
to [Kim&05, Snook&06, Dascalu&02, Laleau00, RoseMan] is the mapping between a
formal method (Alloy, Z, Z++, VDM++) an the UML Class Diagrams which provides
a static view. Not only UML Class Diagrams have been considered for transforming
between formal and informal models. UML Sequence diagrams [Dascalu&02] and state
machines [Guelfi&08] have also been subject of model transformations.

A To enable such a transformation, rules must be stated in order to before a actual
transformation can take place. The specification of such rules are critical and often not
explicitly defined [Kim&05]. These rules can be specified in a formal way and proved
as in [Laleau00], where they proved 80 % of the rules specified in B by isabelle/HOL.

[McUmber&01] have formalized UML in terms of Promela, the formal system de-
scription language for SPIN1. The mapping process from UML to a target language has
been automated in a tool called Hydra, which is a prototype to demonstrate that the rules
are sufficiently defined that formal language specifications can be generated automati-
cally from UML diagrams.

[Konrad&05] describe a tool for specifying and analyzing natural language proper-
ties of UML models, resulting in generation of the corresponding formal specification
language Promela, which can then be formally analyzed by the model checker Spin.
Several tools for the behavioral analysis of UML models have been developed, where a
user typically specifies properties in terms of formal specification languages. The aim
of their tool is to ease the use of formal specification languages by being able to accept
natural language as input. Natural language properties are derived using a grammar that
supports certain specification patterns. Their grammar supports the natural language
representation of these specification patterns. The grammar is used to specify linear-
time temporal logic (LTL) properties, i.e. encode formulae about a condition which will
eventually be true. The grammar can be customized according to vocabulary and speci-

1Used for formal verification of distributed software systems.

1.8. OUTLINE OF THE THESIS 15

fication style of a domain. The approach does not require the user to know the specific
syntax and semantics of the formal specification language used.

[Dascalu&02] propose an object-oriented specification approach based on the com-
bined used of UML and Z++, aimed at the construction of real-time systems (Thus the
use of Z++ has traits similar to the VICE extension of VDM++). They aim at developing
a bidirectional link between the diagrammatic (i.e. shown by a diagram) and formal parts
of a software system’s model. They have devised what they call translation algorithms
between a subset of the UML part of the model and its Z++ counterpart (presumably
transformation rules). On the basis of the 4+1 view, they choose to pursue the user view,
structural view and behavioral view, which is further narrowed down to use cases, sce-
narios, class diagrams, and state-charts diagrams. The environment, called Harmony, is
designed to support the proposed specification approach, which is organized in stages
and steps. It provides the methodological basis for a pragmatic and rigorous object-
oriented modeling approach. The integration of formal and informal methods occur
between UML classes/compounds2 and Z++ classes.

[Kim&05] takes an MDA approach towards integrating a formal modeling language,
Object-Z, with an informal modeling language, UML. Using the MDA model transfor-
mation approach, they define a meta-model of Object-Z using the MOF. Given the meta-
models of UML and Object-Z, they then define transformation rules specifying how to
convert an Object-Z element into a UML model element.

The UML meta-model is already available via the UML2-project as the file UML2.ecore.
The Object-Z meta-model was automatically generated from Rational Rose using EMF.
Thus, both meta-models are also MOF-models.

The transformation rules are defined using a transformation language, Tefkat, which
is also a MOF model. The transformation language allows them to define a tracking
model, which enables linking elements from both models together, i.e. by querying the
tracking model, it can be decided which elements in one model are generated from ele-
ments in another model.

An actual transformation is then achieved automatically using a transformation tool
that understands the transformation language. Tefkat is the transformation language used
by [Kim&05] to define transformation rules.

1.8 Outline of the Thesis

This thesis is structured into 9 chapters, each covering a particular topic of the model
transformation. The following section gives a quick overview of the thesis. The suc-
ceeding section gives a more elaborate account of the chapters of this thesis.

2A class with enhanced behavioral description.

16 CHAPTER 1. INTRODUCTION

1.8.1 Quick Overview of the Thesis

The first part of this thesis introduces the reader to UML and VDM++. The next two
parts are concerned with the model transformations between VDM++ and UML Class
Diagrams and VDM++ traces and UML Sequence Diagrams, in terms of transformation
rules and how they are specified using VDM++. Then follows a discussion of the im-
plementation of the transformation rules the use of various tools to achieve the model
transformation. Finally we conclude on the work presented in this thesis.

1.8.2 Thorough Exposition of the Thesis

Chapter 2 gives an introduction of the informal language UML regarding its history
and general usage. The chapter then focuses on the syntax and semantics of UML. It
ends with an introduction of XML Metadata Interchange (XMI), which is the standard
for diagram exchange advocated by OMG.

Chapter 3 introduces the formal language VDM++ and its uses in the industry. Next,
a description of the syntax and semantics of VDM++ is given, supplemented with an
account of current tool support. The chapter ends with a description of the new concept
of VDM traces.

After the introduction of the two modeling languages, Chapter 4 gives the reader a
thorough explanation of the bidirectional transformation rules, which enable going back
and forth between a VDM++ model and a UML model.

Chapter 5 follows up on the preceding chapter by giving a description of how the
transformation rules from Chapter 4 are turned into a VDM model. The chapter also
introduces the reader to Abstarct Syntax Trees, the Overture tool ASTGen and how to
merge changes between VDM++ and UML models.

The thesis now turns the attention towards how to perform a model transformation be-
tween VDM++ and UML Sequence Diagrams. Chapter 6 first discusses which com-
binations of VDM++ traces and UML Sequences Diagrams yield the greatest benefit.
Then follows a description of how VDM++ traces are related to UML 2 Sequence Dia-
grams in terms of transformation rules.

Chapter 7 describes how the transformation rules from Chapter 6 are added to the ex-
isting model transformation described in Chapter 5.

At this point in time, the reader will have knowledge of the structure of both VDM++ and
UML in addition to a complete set of transformation rules between the two languages.
Chapter 8 introduce the reader to the implementation of the model transformation. The

1.8. OUTLINE OF THE THESIS 17

implementation is facilitated tool-based code-generation to Java.

Finally, in Chapter 9, we conclude on the thesis work. Each subsection of the conclu-
sion treat a certain angle of this thesis work. The thesis is ends with an overall conclusion
which sum up relevant aspects of the thesis in its entirety.

Appendix A gives an outline important aspects regarding our participation in the Fifth
Overture Workshop in Braga, Portugal.

Appendix B contains a description of omitted UML 1 constructs, i.e. the constructs
which have no VDM++ counterpart.

Appendix C contains a description of omitted UML 2 constructs.

Appendix D contains a description of the changes to the UML meta-model from UML
1 to UML 2.

Appendix E contains the specification of the UML AST, i.e. the syntactical descrip-
tion of the UML abstract syntax.

Appendix F contains the model coverage, i.e. it shows which lines of the model are
being used during a model transformation.

Appendix G contains the entire OML AST as provided by the Overture project [Overture07].

Appendix I presents an overview of the extent to which the model transformation is
implemented.

A list of symbols and abbreviations can be found in the back thesis.

Chapter 2

UML

This chapter start by a short introduction to the history and general usage of the Unified
Modeling Language (UML). Then a brief overview of the structure of UML follows
to prepare the reader for the sections describing the constructs of UML 1.4.2 (denoted
UML 1) and UML 2.1.2 (denoted UML 2) and the differences between the two versions.
The chapter ends with a description of the XML Metadata Interchange (XMI) format by
OMG to enable interchange of diagram instance data among different tool vendors.

2.1 History of UML

In the mid-1970s and the late 1980s various object-oriented (OO) modeling methodolo-
gies began to appear as a consequence of the emerging OO analysis and design. More
than fifty different of modeling languages occurred in the period between 1989-1994 and
developers had difficulties finding a methodology that satisfied their needs [UML1.4.2,
p33-34]. In the mid-1990s the creators of two leading methods, the Object Modeling
Technique (OMT) and the Booch Method by Rumbaugh and Booch, respectively, began
to assimilate from other methods what they considered to be of interest [UMLDistilled,
p7-8]. Together Rumbaugh and Booch attempted to reconcile their two approaches and
started to work on a Unified Method [UMLDistilled, p7-8]. In 1993 they were ac-
companied by Jacobson who brought with him the object-oriented software engineering
(OOSE) method which was a use-case oriented approach that provided excellent support
for business engineering and requirements analysis [UMLDistilled, p7-8].

Rumbaugh, Booch and Jacobson was summoned in 1996 by Rational to head the
development of a non-proprietary Unified Modeling Language that should be presented
to the Object Management Group (OMG) for adoption [UMLDistilled, p7-8]. The ra-
tionale was that the abundance of methodologies was impeding the spreading of the OO
approach and a unified language would help settle the differences [UMLDistilled, p7-8].
The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9

19

20 CHAPTER 2. UML

and 0.91 in June and October of 1996 [UML1.4.2, p33-34]. In 1997 Rational released
version 1.0 of the UML documentation as their proposal to OMG. The proposal included
suggestions from various organisations which was merged and the resulting version 1.1
was adopted by OMG [UMLDistilled, p8].

In January 2005 the International Standardization Organization (ISO) released ver-
sion 1.4.2 of UML as an international standard (ISO/IEC 19501) and in July 2005 OMG
released UML 2.0 which presented the most radical changes to the UML since version
1.1 [OMGUMLHomepage], [UMLDistilled, p157]. The present version of UML at the
time of this writing is 2.1.2 [OMGUMLHomepage].

2.2 UML Usage

UML is a semi-formal visual modeling language used by developers to model a system
at a desired level of abstraction. It allows developers to step back and look at a system,
or a subpart hereof, from a more general point of view. The different views comprise
thirteen kinds of diagrams distributed between two primary categories: structure and
behavior [UMLSuperstructure2.1.2, p700]. This thesis focuses on Class Diagrams (static
structure) and Sequence Diagrams (behavior). Several examples of the industrial use of
UML exist [UMLSuccess], some of which are described below.

2.2.1 KLEIN+STEKL GmbH

The German software company KLEIN+STEKL GmbH provided a solution to the Op-
erations Department of Zuercher Kantonalbank (ZKB), one of the three leading banks in
Switzerland. The system serves about 60 NT-clients. The users are dealing with about
330 different data classes and about 220,000 objects saved in the database. The SDV
Tool1 consists of some 109,000 Java statements in 1,335 classes. The whole system was
designed with UML (Rational Rose [RationalRose]). As UML is easy to understand,
use cases, data models and interactions can be discussed even with the end users, thus
ensuring a practical solution [ZurcherKantolbank].

2.2.2 Borland Together Control Center

The Charles Schwab Corporation provides securities brokerage and related financial ser-
vices for 8 million active accounts with $837 billion in assets. Schwab senior technol-
ogy management recognized the need to facilitate the consistency of architecture and
development models across multiple projects, and get developers speaking the same lan-
guage. After surveying its developers, and comparing features to features, Together
Control Center was selected. One of the biggest benefits to the developers at Schwab
is the Together Control Center reverse engineering feature, which takes existing code
and allows the developer to visualize the model using UML. Another important feature

1Tool for Master Data Management (in-house product.)

2.3. THE UML META-MODEL 21

to the developers is simultaneous round-trip engineering, which ensures instantaneous
code and model matching allowing for fewer bugs and faster testing. [Schwab]

2.2.3 Telelogic Rhapsody

Telelogic Rhapsody is a commercial model-driven development tool targeted at the de-
velopment of embedded and real-time systems. The Rhapsody modeling environment is
based on the UML. The product has been used in a variety of industrial applications,
implicitly spreading the use of UML [Thales, ThalesOptronics, ECITelecom, Trane,
ZurcherKantolbank, Schwab, MotionControl, ObjectiveControl, Cytyc].

2.3 The UML Meta-model

Modelers use UML to model an abstraction of real world phenomena, e.g. business logic,
prior to implementation. The runtime instances of an implementation and a correspond-
ing UML model reside in two different layers of abstraction as shown in Figure 2.1. The
lowest level, M0, represent the runtime instances (implementation) and the layer above,
M1, represent the UML user-model. The rules by which the UML user-model is de-
fined, i.e. the rules a modeler must obey when using UML for modeling some system,
are defined in the M2 layer [UML1.4.2, p28]. The M2 layer is an abstraction of M1 and
is called the meta-model of UML. The meaning of meta is data about other data and as
a result the meta-model of UML is the model that describes the UML user-model. The
meta-model prevents modelers from inventing their own constructs or interpretations of
existing constructs at the user-model level. Above the UML meta-model level is the
meta-meta-model (M3) called the Meta-Object Family (MOF), which is the language
used to build meta-models, e.g. the UML meta-model.

Figure 2.1 is described in more detail in the following to allow a deeper understand-
ing of the underpinnings of UML.

The boxes in layers M1-M3 are classes of that layer. The general concept of a class is
applicable to all three layers, but with a twist: a class is a cohesive collection of data that
specifies the structure and behavior of the classes created from the class (its instances).
The subtlety of a class having classes as instances is a feature of meta-modeling. Only
classes in the M1 layer has “real” objects as instances. The classes in layers M1-M3
comprise a model at each layer. The main idea of a model is also applicable to all
three layers. A model is a description designed to show the main features of a concept.
The concept of each layer varies: the concept of a M1 model is to model real-world
phenomena. The concept of a M2 and M3 model is to model a model. In this thesis
a M1 model is denoted a model. The prefix meta is used to distinguish, from a certain
standpoint (i.e. M1), models at different layers. The meaning of meta-model in this
context is data about a M1 model, i.e. a M2 model (UML meta-model). The same
applies for a meta-meta-model, which translates to data about a M2 model, i.e. a M3
model (MOF). Hence, a class is a constituent of a M1 model (UML user-model), a

22 CHAPTER 2. UML

Figure 2.1: Example of the link between different layers of the UML Meta model

meta-class is a constituent of a M2 model (UML meta-model) and a meta-meta-class is
a constituent of a M3 model (MOF).

The dashed arrows in Figure 2.1 are dependencies. A dependency in this con-
text signifies a model element requiring another model element for its specification
[UMLSuperstructure2.1.2, p79]. The model element at the tail of the arrow (the client)
depends on the model element at the arrowhead (the supplier). The text enclosed in
angle brackets is the dependency stereotype.

Beginning from the bottom up, the M0 instance aVideo is an instance of the M1
class Video. UML allows modelers to model instantiated classes. The class :Video is a
model of an instance of Video as indicated by the dependency stereotyped <<snapshot>>
going from :Video to Video2. :Video is also an instance of the M2 class Instance.
The M2 classes Class and Instance are connected by a M1 construct, the an asso-
ciation. The reason it is possible to use a M1 construct in a M2 context is that the
UML 2 specification use a combination of three languages to describe the full UML
[UMLInfrastructure2.1.2, p34]. One of those languages is a subset of UML3. The ori-

2The M2 class Instance is in fact the class InstanceSpecification [UMLSuperstructure2.1.2, p99] and it
represents an entity at a point in time, i.e. a snapshot.

3The practice of defining a language by means of a subset of the language being defined yields a
semi-circular description. Understanding the UML specification is possible for two reasons: (1) only a
small subset of UML constructs are needed to describe its semantics and (2) additional two languages - the

2.4. CHOOSING VERSIONS OF UML FOR COMPARISON 23

entation and end-name of the association shows that Instance has an attribute named
classifier of type Class. According to the UML specification, the attribute classifier is
of type Classifier [UMLSuperstructure2.1.2, p99], and the M2 class Class inherits
Classifier [UMLSuperstructure2.1.2, p66]. The association shows how Instance

can be instantiated as :Video. It is possible because it has been modeled with an at-
tribute of type Classifier.

The UML meta-model can be extended through Profiles or first-class extensions han-
dled through MOF. With Profiles, the UML meta-model can be adapted to include (not
remove nor alter) constructs not part of UML released by OMG [UMLInfrastructure2.1.2,
p189]. It is a generic extension mechanism for customizing the UML meta-classes for
particular domains and platforms. Profiles are defined using stereotypes, which define
how an existing meta-class, e.g. Class, Property or Operation, may be extended. A
Profile is a collection of such stereotypes that collectively customize UML for a partic-
ular domain. Profiles suffice if the existing properties of the UML meta-classes makes
sense to the domain. If, however, some properties are misplaced or unaligned or if entire
meta-classes are missing, first-class extensibility through MOF is an option. First-class
extensibility handled through MOF impose no restrictions on what is allowed to do with
the UML meta-model, e.g. add or remove meta-classes.

2.4 Choosing versions of UML for comparison

The Rose-VDM++ Link is based on UML 1.1 [UMLMan] and the model transformation
developed as part of this thesis is based on UML 2.1.2. Consequently, both specifications
of UML must be investigated to uncover differences that may influence the design of the
model transformation rules. UML 1.4.2 has been chosen to represent UML 1.x. The
rationale for choosing version 1.4.2 is that it is the only UML specification by OMG
certified as an international standard by ISO and thus the version recognized by most
developers. UML 2.1.2 has been chosen to represent UML 2.x because it is the latest
published version of UML by OMG.

UML 1.4.2 is denoted UML 1 and UML 2.1.2 is denoted UML 2.

2.5 UML 1

This section presents the notion of UML 1 Class Diagram (CD) and Sequence Diagram
(SD) followed by a description of the model constructs constituting each diagram type.
Constructs not applicable to the model transformation between VDM and UML are not
described in this section. Interested readers are referred to Appendix B for more infor-
mation on excluded UML 1 constructs.

declarative language Object Constraint Language (OCL) and precise natural language - are used to define
UML.

24 CHAPTER 2. UML

2.5.1 Class Diagram

A CD consists of inter-connected classes and interfaces. A class is a definition of behav-
ior, structure and relationships shared by multiple instances of the class, denoted objects.
A class can be concrete or abstract. A concrete class can be instantiated as opposed to an
abstract class which can only be inherited from, even if it contains implementation code.
Connections among classes constitute relationships that can take the form of associations
or generalizations.

Class

A class in an UML 1 CD is an instance of the meta-class Class. Figure 2.2 depicts
a condensed CD from the UML 1 specification and shows the meta-attributes of class
Class [UML1.4.2, p44,45,47]. It has the following meta-attributes:

isActive: Specifies whether an instance of a class maintain its own thread of control.

isAbstract: Specifies whether a class can have a direct instance or not.

ownerScope: Specifies whether the attributes or operations (see Figure 2.2) of a class
are accessible directly via the class or via an instance of the class. Possibilities are
instance or class [UML1.4.2, p106].

feature: Specifies an ordered list of attributes and operations, owned by the class (in-
stances of Attribute and Operation.

Figure 2.2: A condensed CD showing the attributes of meta-classes Class, Attribute
and Operation [UML1.4.2, p44,45]

2.5. UML 1 25

As mentioned above, an Operation is an owned meta-attribute of Class [UML1.4.2,
p56], and it too has meta-attributes, as described below.

ownerScope, isAbstract: Have the same semantic meaning as described above for
Class.

visibility: Denotes how the class to which it refers is seen outside the enclosing name
space. Possibilities are public, protected and private.

isQuery: Specifies whether execution leaves the state of the system unchanged. A
value of false indicates that side-effects may occur.

Parameterized class

A parameterized class is a generic class with one or more unbound formal parameters.
The parameter can be of any type and can be used in the operations of the class. To be
a meaningful constituent of a CD, the unbound parameters of a generic class must be
bound to some types [UML1.4.2, p54].

Figure 2.3: An example of a parameterized class

Figure 2.3 shows a generic class Set with one unspecified parameter T. The class
EmployeeSet has T bound as type Employeee as specified by the <<bind>> depen-
dency to Set.

Nested Class Declarations

A class declared within another class belongs to the namespace of the other class and
may only be used within it. This construct is primarily used for implementation reasons
and for information hiding [UML1.4.2, p234].

Association

An association defines a semantic relationship between classes. It consist of two or more
ends, each specifying a connected class and may optionally have a name [UML1.4.2,
p251]. A binary association connects exactly two classes and a n-ary association may
connect several classes. Figure 2.9 shows the relevant meta-classes to understand the
definition of an Association.

26 CHAPTER 2. UML

Figure 2.4: The class NestedClass is declared within the DeclaringClass, hence it
is restricted to the namespace of the DeclaringClass [UML1.4.2, p239].

(a) Showing a navigable association. (b) Showing a composite association with a ordered set.

Figure 2.5: Association examples both navigable, composite and ordered.

Figure 2.5a shows how a navigable association is visualized in a diagram. Each
Wheel may belong to one Car, and one Car may have multiple wheels. Figure 2.5b
shows a Polygon which has a composite association to three or more ordered Point.
Class Polygon is the only class with knowledge of class Point, hence instances of
Point are constructed and destructed by Polygon alone. Options for enhancing the
power of expression of associations are described in the following text.

Xor association: Denotes that only one of a set of possible associations may be instan-
tiated [UML1.4.2, p50]. See Figure 2.6 for an example.

Figure 2.6: Xor Association. The dotted line annotated with {xor} denotes only one of
the two classes may be instantiated by an instance of Account [UML1.4.2, p252]

N-ary association: An n-ary association is an association which spans three or more
classes, see Figure 2.7. The lines connecting the owner of the association to mul-
tiple targets are joint through a diamond-shape. Although an n-ary association
is composed of several lines, it is semantically one association. Multiplicity (ex-

2.5. UML 1 27

plained further below) may be annotated to an n-ary association, but with less rigor
compared to a binary association (i.e. between exactly two classes) [UML1.4.2,
p259]. Figure 2.7 shows a simple n-ary association with little semantics. It could,
however, be further annotated to show the navigability and multiplicity.

Figure 2.7: An N-ary association. The semantics of the depicted n-ary association is
merely that an association of some kind exist among the three classes

Most of the interesting details about an association are attached to its ends. The
meta-class AssociationEnd is represented The following additions can elevate the
level of precision to an association-end.

Multiplicity: The multiplicity of an association-end specify the number of allowed
instances the class located at the opposite end of the association may have knowl-
edge of [UML1.4.2, p256]. A multiplicity is a range of non-negative integers. An
example can be seen in Figure 2.5a and 2.5b.

Ordering: If the multiplicity is greater than one, the set of related instances may
be either ordered or unordered. Default is unordered (duplicates are prohibited)
[UML1.4.2, p253]. It is in effect a constraint on the association. An example can
be seen in Figure 2.5b.

Qualifier: A qualifier is an attribute or list of attributes whose values serve to partition
the set of instances associated with an instance across an association [UML1.4.2,
p257]. See Figure 2.8 for an example.

ScopeKind: Is an enumeration that denotes whether an association belongs to indi-
vidual instances or an entire classifier. Its values are {class} or {instance},
respectively.

Navigability: When placed on a target end, specifies whether traversal from a source
instance to its associated target instances is possible. Specification of each di-
rection across the association is independent. A value of true means that the
association can be navigated by the source class and the target role-name can be
used in navigation expressions [UML1.4.2, p52].

28 CHAPTER 2. UML

Figure 2.8: The qualifier accountNo designates that every instance of Person is iden-
tified by zero or more qualifier instances. It also shows that every instance of Person
may be identified by an infinite number of accountNo instances.

Visibility: Specified by a visibility indicator (+, #, -, or explicit property name such as
public) in front of the name of the association. Possibilities are:

• public, where other classes may navigate the association and use the name
of it in expressions,

• protected where descendants of the source class may navigate the association
and use name of it in expressions, and

• private, where only the source class may navigate the association and use
the name of it in expressions.

Figure 2.9: A condensed CD showing the class hierarchy of the meta-class
Association.

Generalization

The terms child, subtype, and subclass are synonymous and mean that an instance of
a class being a subtype of another class can always be used where an instance of the

2.5. UML 1 29

latter class is expected. The terms superclass and generalization and their counterparts
subclass and specialization, are the preferred terms in this thesis. Generalization is used
to classify classes. A class (abstract or concrete) is a superclass if it contains signatures
of operations or implementation code common to one or more specializing classes, i.e.
subclasses that inherit the superclass. See Figure 2.10 for an example. The superclass
is thus a generalization of the subclasses and the subclasses are specializations of the
superclass.

Figure 2.10: An example of generalization. A Whiteboard is both a Rectangle

and a Shape, i.e. an instance of Whiteboard can be used where the former classi-
fies are expected. Instances of Shape and Rectangle, however, can not be used where
Whiteboard is expected.

Stereotype

Classes may be annotated with stereotypes. A number of built-in stereotypes exist that
can be utilized to denote certain intentions of a stereotyped class, e.g. control or
semaphore, and is in effect a new meta-class introduced at modeling time [UML1.4.2,
p221] as it is possible to invent new stereotypes (Rose-VDM++ Link uses stereotypes.
See section 2.5.3).

Constraint

In the UML meta-model, Constraint is used to restrict elements. The restriction can
be stated in natural language, or in different kinds of languages with a well defined
semantics. The meta-class Constraint has the attributes constrainedElement and
body. The first specifies an element to constrain and the second a semantic condition or
restriction on that element.

2.5.2 Sequence Diagram

A UML 1 SD is made up of the meta-classes Collaboration and Interaction4

as shown in Figure 2.11. The former is the structural description of the participants,
i.e. objects, and Interaction is the description of their communication patterns. The

4Or CollaborationInstanceSet and InteractionInstanceSet, due to the type-instance dichotomy: each
element has a dual character, e.g. Class-Object, Association-Link, etc. [UML1.4.2, p206].

30 CHAPTER 2. UML

structure of the objects that participate in an SD is called a Collaboration. The com-
munication pattern performed by the objects to accomplish a certain task is called an
Interaction [UML1.4.2, p125].

Figure 2.11: The meta-classes involved in a SD are shown. [UML1.4.2, p127]

As seen in Figure 2.11, the meta-class Collaboration includes a set of Classifier-
Roles and AssociationRoles that defines the objects of the SD. ClassifierRole
and AssociationRole defines usage of an instance of Classifier and Association,
respectively. That is, ClassifierRole represents the classes and attributes involved
in a particular SD [UML1.4.2, p137]. The meta-class Interaction is defined in the
context of a Collaboration and it contains a set of partially ordered messages, each
specifying one communication, e.g. which operation to be invoked [UML1.4.2, p139].

Each object is called an lifeline and is represented by a box with a vertical dashed
line stemming from the lower center of the box. An example is shown in Figure 2.13.
The interaction between objects is facilitated by messages between lifelines. The mes-
sage is drawn as arrows between and is a communication that conveys information, e.g.
about an operation to invoke or an instance to create.

An arrow may also be labeled with a sequence number to show the sequence of
the message in the overall interaction or for identifying concurrent threads of control.
An arrow may also be labeled with a condition and/or iteration expression [UML1.4.2,
p283].

A connected set of arrows may be enclosed in a separate diagram and marked as an
iteration. The continuation condition for the iteration may be specified at the bottom of
the iteration. If there is concurrency, some arrows in the diagram may be part of the
iteration and others may be single execution.
Various labels (such as timing constraints) can be shown either in the margin or near the
transitions or activations that they label. Figure 2.12 shows how the lifeline may be split

2.5. UML 1 31

into two or more concurrent lifelines to show conditionality or concurrency. The latter
may be the case if the conditions are not mutually exclusive. The lifelines may merge
together at some subsequent point.

Figure 2.12: Sequence diagram showing creation of objects along with parallelism.

Four objects and one actor5 are shown in Figure 2.12. The collaboration is triggered
by a call to op() on ob1 and results in numerous calls as time progresses according to
an unknown metric. ob4 splits its lifeline, suggesting multi-threaded execution. ob1 and
ob2 is destroyed at different points in time and the method-calls foo(x) and bar(x)

have conditions to be satisfied prior to execution.
If a diagram loses its clarity due to information overhead (e.g. it exceeds a sheet

of paper) it can be split up as seen in Figure 2.13 for an example. In such cases, the
cut between the diagrams can be expressed in one of the diagrams with a dangling ar-
row leaving a lifeline but not arriving at another lifeline, and in the other diagram it is
expressed with a dangling arrow arriving at a lifeline from nowhere.

2.5.3 Rose-VDM++ Link

This section addresses the extent to which model transformation from VDM to UML is
possible using the Rose-VDM++ Link (RVL) tool. RVL allegedly omits VDM and UML

5An intervening entity; a Use Case concept [UML1.4.2, p273].

32 CHAPTER 2. UML

(a) SD showing a message pointing to nowhere
with a comment describing the where.

(b) SD showing a message origin from nowhere
with a comment describing the where.

Figure 2.13: Shows how to connect SDs by the use of pointing to and from nowhere
[UML1.4.2, 284].

constructs that can only be described in one of the two languages [UMLMan, p27]. This
is not entirely true, however, since RVL does omit UML 1 construct that are expressible
in VDM. This section first present UML 1 constructs that RVL supports. Second, the
UML 1 constructs omitted by RVL are presented. In this section, UML 1 is referred to
simply as UML.

Rose-VDM++ Link Included UML 1 constructs

VDM classes are equivalent to UML classes and can be mapped directly to and from
VDM.

Values and instance variables are represented as attributes of a class in UML. RVL
use the stereotypes <<instance variable>> and <<value>> to distinguish between
instance variables and values, respectively. The need for such a distinction exist because
values are read-only and instance variables are not [UMLMan, p27].

Operations and functions map into the operations section of the UML class. They are
distinguished by the stereotypes <<operation>> and <<function>> because func-
tions are constrained from interaction with values or instances variables. Operations on
the other hand are capable of altering the state of an instantiated class by manipulating
instances variables [UMLMan, p28].

Operations and functions may be explicit or implicit, i.e. implemented to some de-
gree or not implemented at all. Both types map to the same syntax in UML, hence it
is impossible to tell the difference between the two. RVL deals with this issue by sav-
ing the implementation of explicit functions or operations and apply the following rules
when mapping functions or operation from UML to VDM [UMLMan, p28]:

2.5. UML 1 33

Rose-Link Rule 1: If a function is already defined in VDM, it is mapped into the same
kind (implicit or explicit) as defined in VDM.

Rose-Link Rule 2: If a function is not known in VDM (i.e. the function was defined
at the UML level) it is mapped as explicit.

Objects (instances of VDM classes) may have relations to other objects through
the object reference type [Fitzgerald&05, p78]. These relations correspond to UML
associations and are represented by an arrow from the client class towards the class
being referenced. The arrow indicates navigability towards the referenced instance. The
ends of an association can be given a name which indicates the intended role of the
association. Binary associations, i.e. an association among exactly two classes, renders
the representation of the referenced object as an attribute in UML superfluous, because
it is already given by the name of the association-end. Hence it is represented by the
association alone.

In listing 2.1 a VDM model and its corresponding UML 1 Class Diagram generated
by RVL is shown.�
class Person

types
day = nat;

instance variables
name : seq1 of char :="My name";

skills : set of Skill;

favouriteDishes :

seq of char := [];

appointments : map day

to Appointment;

end Person

class Appointment

end Appointment

class Skill

end Skill
� �
Listing 2.1: VDM model of a Person

VDM:VDMPersonClassExample

Figure 2.14: UML visualization of the
VDM model generated by RVL

It is possible to relate one instance to several other instances by using the following
VDM constructs:

set of objref: A one-to-many association.

seq of objref: A one-to-many association of ordered elements.

seq1 of objref: The non empty sequence of object references is represented by the
range 1..* at the many-end of the association.

34 CHAPTER 2. UML

[objref]: The optional object reference is represented by the range 0..1 to the associa-
tion.

Associations resulting from use of seq and seq1 are decorated with the constraint
{ordered} because sequences are ordered [Fitzgerald&05, p136].

Members of a class may be declared static. A static member can be accessed directly
from the class as opposed to a non-static member that requires an instance of the class.
RVL distinguishes between the two cases by prepending the character $ to the name of
an value and underscores the name of an operation, as shown in listing 2.2 and Figure
2.5.3.�
class Owner

values
nonStaticValue : nat = 0;

static staticValue : nat = 1;

instance variables
private nonStaticVar : Owned;

private static
staticVar : Owned;

end Owner

class Owned

end Owned
� �
Listing 2.2: Owner

Figure 2.15: UML visualization of the
VDM model generated by RVL

Mappings in VDM are used to model relationships between the values of one set, re-
ferred to as the domain, and the values of another set, referred to as the range [Fitzgerald&05,
p167]. A mapping is expressed by the constructs map and inmap. The first denotes the
type of all finite mappings between any two types, the mapping operates on, i.e. many-
to-one. The latter denotes the injective version of the first, i.e. a one-to-one mapping
between two types. The constructs map or inmap result in a qualified association in
UML. The qualified association can be assigned a name, which will be the type of the
domain of the map. See Figure 2.5.3 for an example of map.

The keywords is subclass responsibility in VDM designates delegation of
responsibility, i.e. inheritance relationship, which translates to an generalization arrow
in UML. A VDM class containing a delegated operation of function is translated to an
abstract class in UML, denoted by an italicized class name.

Rose-VDM++ Link Excluded UML 1 constructs

RVL omits UML 1 constructs that can in fact be represented in VDM. These constructs
are presented in this section with a proposition of how to map them to UML 1. Each

2.5. UML 1 35

description contains a reference to section 4 on static model transformation, where ex-
planations of the transformation rule for each VDM and UML construct can be found.

Constraints: Classes, operations or parameters cannot be constrained in RVL. Nev-
ertheless, possibilities exist for specifying simple textual constraints in UML.
The meta-class Constraint define such a semantic condition or restriction ex-
pressed in text. A number of textual constraints are defined as enumerations in
the UML meta-model, e.g. {Xor} for use with Associations, as showed in Fig-
ure 2.6 [UML1.4.2, p50,252]. Such an annotation can be mapped to VDM as an
Union type [Fitzgerald&05, p74]. More complex constraints, such as invariant,
should not be mapped to UML due to the overhead of textual information it will
represent, thus bloating the UML diagram. See section 4.5.

N-ary association: An association may be binary or n-ary [UML1.4.2, p259]. The
latter is not possible to map from VDM to UML using RVL, although it can be
mapped as a product type [UML1.4.2, p75]. See section 4.6.

Active class: VDM classes may contain a thread section to enable modeling concur-
rent systems. The UML counterpart is an active class (isActive=true). RVL
ignores VDM classes with a thread section, however, such a class can be mapped
as an UML active class. See section 4.9.

Template class: A generic class has one or more unbound parameters. Such a construct
is not part of VDMTools [Fitzgerald&05, vii]. However, the open source initiative
named Overture Project develops a formal modeling method, Overture Modeling
Language (OML), founded on VDM. In this context an extension of the VDM
formal specification has been made as part of a master’s thesis project to include
generic classes [Christensen07], hence it is possible to represent generic classes
in the Overture variant of VDM. See section 4.12.

Inner class: A UML class may have inner classes, i.e. nested classes confined to the
name space of the host class. The idea of inner classes is to limit visibility of a
class further than possible by use of name spaces. Currently, VDM does not have
the concept of inner classes. Extending VDM to support inner classes requires
access modifiers on classes, otherwise the concept of inner classes is lost. In
listing 2.3 a suggestion to extended the VDM syntax is incorporate to enable the
concept of inner classes.

36 CHAPTER 2. UML

�
public class Owner <-- added: access modifier on class declaration

classes <-- added: classes compartment

private class Inner

end Inner

end Owner
� �
Listing 2.3: Example of extended syntax for nested classes support.

In listing 2.3 a classes Owner is shown. The specification in extended by a visibil-
ity public and a inner class definition classes to support declaration of nested
classes.

Another approach, that which is taken in this thesis, is to map definitions of VDM
data types as UML nested classes. The types part of a VDM class definition
contains any data types defined in the class. Such types can be considered inner
classes; see section 4.3

2.6 UML 2

This section presents the differences between UML 1 and UML 2 in terms of new and
deprecated constructs. Section 2.5 introduced a number of UML 1 constructs in order to
explain the level of UML 1 support offered by RVL. The aim of this section is to prepare
the reader for the sections describing the transformation rules.

2.6.1 Class Diagram

The basic building blocks of a CD have not changed from UML 1 to UML 2. It still
consist of classes with relationships among them. Figure 2.16 gives an overview of the
meta-classes constituting a UML 2 class diagram. The changes important to this thesis
work are presented in the following.

Deprecated UML 1 meta-classes

Association: Binary associations and attributes now have different notations for the
same concept, i.e. an attribute may represent the navigable ends of a binary asso-
ciation.

ChangeableKind: The enumeration has been revoked. It comprised the values {changeable},
{frozen} and {addOnly}, which denoted how an association-end was allowed to
be modified. It has been replaced the meta-class Constraint, which allows tex-
tual constraints to be devised at a desired level of detail using natural language or
more formal languages, e.g. OCL. [UMLSuperstructure2.1.2, p74].

2.6. UML 2 37

Figure 2.16: A condensed CD showing the attributes of meta-classes Class, Attribute
and Operation [UMLSuperstructure2.1.2, p48]

Xor-association: The special kind of association has been replaced by the use of
Constraint.

Nested class symbol: The nested class symbol shown in Figure 2.4 in section 2.5
have been deprecated. Normally, connections among classes are some kind of
Relationship [UML1.4.2, 45] [UMLSuperstructure2.1.2, 148]. The nested
class symbol in UML 1, however, are purely notational and has no supporting
meta-class. No specialization of Relationship in UML 2 is used to model
nested classes. The notation in UML 2 is simply to prepend the name of a nested
class with its owning class (see Figure 4.3 in chapter 4 for an example).

2.6.2 Sequence Diagram

The basic building block of a UML 2 SD have not changed. It still consist of lifelines
connected by messages. However, some of the underlying meta-classes have changed.

An interaction may be part of Sequence Diagrams, Interaction Overview Diagrams,
and Communication Diagrams [UMLSuperstructure2.1.2, p473]. Figure 2.17 shows
meta-class Interaction and other meta-classes related to it. Notice that every class,
except those related to messages, inherit InteractionFragment. The idea in UML
2 SD is that everything is a piece of interaction and that pieces of interaction may be
nested within each other to form more complex interactions.

The idea becomes apparent in Figure 2.18, where it is seen that CombinedFragment
and InteractionOperand is also subclasses of InteractionFragment
[UMLSuperstructure2.1.2, p488,501].

38 CHAPTER 2. UML

Figure 2.17: Condensed class diagram showing the meta-classes constituting the inner
parts of a SD

Figure 2.18: Condensed class diagram showing the meta-classes constituting the inner
parts of a SD

In UML 2 the concept of CombinedFragments is introduced. The only valid option
for describing procedural logic in UML 1 Sequence Diagrams is to separate a collection
of messages in a separate diagram, e.g. for modeling an iteration with a condition (see
section 2.5.2). In worst case the result is a multitude of different diagrams referencing
each other. CombinedFragment mitigates this problem. A CombinedFragment is a
piece of interaction, i.e. a part of a Sequence Diagram. At the same time it is a Sequence
Diagram by itself. CombinedFragments can be nested within each other. They are

2.6. UML 2 39

used to increase clarity and keep Sequence Diagrams concise [UMLSuperstructure2.1.2,
p483].

As seen in Figure 2.18, CombinedFragment has two attributes, interaction-
Operator and operand. The first dictate the semantics of the CombinedFragment, i.e.
how it should be interpreted by the reader. Depending on the kind of interaction operator
zero, one or more operands separated by a dashed line can be used. The following
operators have been selected for use in this thesis:

Alternative (alt): Denotes a choice of behavior akin to an if-then-else block. At most
one operand must be chosen. It replaces the UML 1 notation of splitting a life-
line into concurrent lifelines to show conditionality. The syntactical way to de-
fine guards to test against is by Continuation [UMLSuperstructure2.1.2, p490].
Continuations have semantics only in connection with Alternative fragments.

Figure 2.19: Example of a alternative region to denote a choice of behavior.

Loop (loop): Encloses a series of messages which are repeated. The number of itera-
tions is defined by a pair (minint, maxint) of minimum and maximum repetitions
or by a boolean expression.

Figure 2.20: Example of a loop region to denote a loop of behavior.

40 CHAPTER 2. UML

2.7 Tool support for XML Metadata Interchange (XMI)

The XML Metadata Interchange (XMI) is a standard for exchanging meta data infor-
mation via Extensible Markup Language (XML) it can be used for any meta model that
can be expressed in Meta-Object Facility (MOF). XMI is standardized by the Object
Management Group (OMG) [OMGUMLHomepage]. XMI is widely used to exchange
UML models by UML modeling tools. The modeling of data in XMI is split into two
parts on abstract model and one concrete model which is the vision of OMG. The ab-
stract model represents the semantic information which in the case of UML would be
e.g. class definitions, it is an instance of arbitrary MOF-based modeling languages such
as UML. The concrete model represents visual diagrams such as Sequence diagrams in
UML. For diagrams the Diagram Interchange [UMLDI] (XMI[DI]) which is a standard
specifying how the actual diagram should be specified.

2.7.1 XMI incompatibilities between UML modeling tools

There are several incompatibilities between different tool vendors implementing XMI
for UML. At the Diagram interchange level the standard are almost nonexistent and
even between interchange of abstract models there are multiple incompatibilities. Un-
fortunately this means that the goal of XMI: Enable interchange of e.g. UML model
are rarely possible or very limited. Moreover the new XMI 2.1 standard are even less
widespread which as a result limit the interchange of models even more.

To give an impression of how this deviations from XMI influence the interchange of
models a list of UML modeling tools is provided together with examples of limitations
and deviations from the standard. All the tools listed have support for XMI version 2.1
which at the time of writing are the newest standard released by OMG. Common for all
the tools are the widely use of the extension tag as shown in listing 2.4 which enables
tool vendors to extend the XMI model with tool specific data. This feature is by no
means intended to be used as a substitute for the abstract or concrete model.�

1 <xmi:Extension extender="Enterprise Architect" extenderID="6.5">

2 </xmi:Extension>� �
Listing 2.4: Example of XMI extension tag.

Enterprise Architect (EA) [EA71]: They claim to have full support for UML 2.1.2
and XMI 2.1. This is partly true, but they do not use the XMI[DI]. All diagrams are
placed inside a EA extension tag with all data serialized to EA specific elements.
In addition to this they placed the information about navigable associations (see
figure 2.5a) and placement of qualifiers of associations (see figure 2.8) etc. in
extension tags as well. The above information in specified in the abstract model
at export but ignored by EA itself at import.

2.7. TOOL SUPPORT FOR XML METADATA INTERCHANGE (XMI) 41

Visual Paradigm for UML (VP-UML) [VP-UML]: They claim to have full support
for UML 2.1.2 and XMI 2.1. This is not correct, but compared to EA they use the
XMI[DI] to some extent. All diagrams are facilitated by extension tags. The
tool is limited in the abstract model e.g. it does not support n-ary associations
instead it creates binary associations between a class acting as the diamond of the
n-ary which do not exist. This diamond class is represended in the abstract model
as a class with no name and an extension.�

1 <ownedMember name=""

2 xmi:type="uml:Class"

3 ...>

4 <xmi:Extension xmi:Extender="Visual Paradigm for UML">

5 <modelType value="NARY"/>

6 <nary/>

7 </xmi:Extension>

8 </ownedMember>� �
Listing 2.5: VP-UML n-ary association class

Eclipse UML2 Tools [UML2Tools], Topcased [TOPCASED-UML2], rCos [rCOS]:
Supports UML 2 and XMI 2.1 but have their own name space for UML which
reduce the interchange of models. Besides the limitation of n-ary associations like
VP-UML and the fact that the UML type are missing from a subpart of elements
in the abstract model, it has a good support. Both Topcased and rCos are build on
top of Eclipse UML2.

2.7.2 Limitation of Sequence Diagrams in XMI

The XMI presentation of a Sequence Diagram (SD) is limited since there is no way a
Message can be linked to a CombinedFragment in the abstract model of the sequence
diagrams (see section 2.6.2). This missing link means that a connection between a mes-
sage of SD and the InteractionOperand in which it may exist are missing from the
abstract model, the link only exist in the diagram where most tool vendors use their own
standard.

Limitation: From a transformations point of view the use of CombinedFragment

in SD is restricted to none, since they do not contribute with any value if no
Messages can be related to them.

To solve the problem without breaking the XMI standard a extension tag is in-
serted in the operand element representing a interaction operand. The new extension

tag is provided with a covered element containing the id of the MessageOccurrence-
Specification (MOS) at the message sendEvent and receiveEvent to link the
message and operand together. This makes it possible through the abstract model to
obtain enough information to reproduce the SD by taking the new extension and the

42 CHAPTER 2. UML

ordering of messages into account. Instead of placing this link in an extension of the
operand it should be included in the operand element but it will require the standard to
be changed.�

1 <ownedBehavior xmi:type="uml:Interaction" xmi:id="idInteraction"

2 name="SD1Interaction">

3 <fragment xmi:type="uml:CombinedFragment" xmi:id="VDM.11" name="CF1"

4 covered="VDM.5 VDM.12" interactionOperator="loop">

5 <operand xmi:id="VDM.21">

6 <Extention extender="umltrans">

7 <covered>VDM.14 VDM.6</covered>

8 </Extention>

9 <guard xmi:id="VDM.22" constrainedElement="VDM.21">...</guard>

10 </operand>

11 </fragment>

12 <message xmi:id="VDM.20" name="" receiveEvent="VDM.14" sendEvent="VDM.6"/>

13 </ownedBehavior>� �
Listing 2.6: Setting multiplicity of properties

In listing 2.6 an example of the extension is shown in line 5-10. Where the message
at line 12 is linked to the operand.

Chapter 3

VDM

The Vienna Development Method (VDM) is a method comprising a collection of tech-
niques for the formal specification and development of software systems. It is based on
the VDM Specification Language (VDM-SL), which is a model-oriented formal spec-
ification language. VDM-SL has an extended form, VDM++, which supports model-
ing of object-oriented systems (denoted VDM from this point). VDM is one of the
oldest formal methods, and have been applied to a wide range of industrial projects
[Fitzgerald&08a, Fitzgerald&08b].

3.1 History of VDM

In the period of 1964-69, IBM used the meta-language Vienna Development Language
(VDL) to define the semantics of PL/1 (Programming Language One) [DinesBjornerPP,
Plat&92, Fitzgerald&08b]. The descendant of VDL, Meta-IV, was used by IBM in 1973-
75 to develop a PL/1 compiler [DinesBjornerPP]. The development approach taken by
IBM became known as the Vienna Development Method, because it comprised several
techniques, including, but not limited to, Meta-IV. During the 1970s, different special-
izations of Meta-IV began to emerge as a result of different application areas. As a con-
sequence, the British Standards Institution (BSI) submitted a standardization proposal
to ISO aiming at reconciling the strands into a unity. VDM-SL was ISO standardized
in 1996 [ISOVDM96] and the standardization of Meta-IV was called VDM-SL. Exten-
sions incorporating object oriented structuring and handling of concurrency were devel-
oped in 1992-94 by the Afrodite1 project [Fitzgerald&05, p10]. The extended VDM-SL
together with improved tool support is collectively denoted VDM++ [Fitzgerald&05,
p10]. Further extensions have been made to VDM, most noticeably VDM In Con-
strained Environment (VICE) which support the modeling of distributed and real-time
systems [VDMLangManVICE]. Available tool support for VDM include:

1Afrodite has been sponsored by the European Union under the ESPRIT programme (EP6500).

43

44 CHAPTER 3. VDM

VDMTools: Constitutes the leading commercial tools for VDM-SL and VDM++. It is
an industry-strength tool set owned, marketed, maintained and developed by CSK
Systems, building on earlier versions developed by the Danish Company IFAD
A/S [VDMFromWikipedia, IFAD].

Overture: An open-source project [OvertureTool] aiming at providing free tool sup-
port for VDM++ on top of the Eclipse platform and to develop a framework for
interoperable tools that will be useful for industrial application, research and edu-
cation [VDMFromWikipedia, OvertureTool]. Focus is also on making it easier to
use VDM to test new ideas and concepts.

3.2 VDM Usage

The purpose of VDM is basically the same as that of UML, i.e. to let developers focus on
the critical parts of a software system by abstracting parts of the system away. It is, like
UML, designed to be independent of methodologies and programming languages. The
great difference between the two is that VDM is a model-based formal method, while
UML is visual semi-formal method. If a model is created in UML it is recommended
to use a verification tool to ensure a certain degree of completeness and correctness.
VDMTools can be used to validate a VDM model very easy. VDM requires that all
constructs to be precisely specified and as a reward for the VDM language supports type
check of the model, the ability to run the hole model and assistance of proof construction.
The useful feature that enables code generation exists in many modeling tools for UML,
the same is the case for VDM, where the model can be executed at the specification level
and the final source that can be generated from the specification.

3.2.1 Banknote Processing

The SIC2000 project at the GAO 2 involved the development of a complex collection of
mutually suspicious cooperating software components in a banknote processing system.
The goal was to expedite the integration of sensor software and hardware into existing
banknote processing systems. This was the first large project at the GAO in which formal
methods played a central role. The analysis, design, and test phases of the development
were supported by the IFAD VDM-SL Toolbox.

The use of VDM in the SIC2000 project can be considered lightweight in the sense
that no formal refinement or proof has been performed. Instead, in the course of the
project, the VDM technology became the focal point of the entire development process,
providing a unified treatment of analysis, design, documentation, and testing. The devel-
opment of the formal specification of the SIC2000 project was performed in 1 man-year.
The implementation (in the SIC) of the specification was completed in 3 man-months.

2Sensor Integration Controller (SIC) project, which was undertaken at the GAO (Gesellschaft für Or-
ganisation und Automation).

3.2. VDM USAGE 45

Modular testing of the SIC was finished in 4 man-weeks: several errors were detected,
all but one attributable to an imperfect translation of the specification into code.

The developers of the project believes, that the primary advantage of the VDM tech-
nology is the support it provides for the construction of precise and realistic software
system models. For complex industrial projects, this is a capability whose value can
hardly be overestimated. The price that must be paid for the capability of formulating
design ideas in a formal notation, following the implications of design features to their
logical conclusions, exposing and codifying all design assumptions in a collection of
formal invariants is not excessively high, considering the alternatives.

If VDM had not been utilized in the project, the result would have been a different,
a weaker, and eventually a more expensive final product than was produced by using
lightweight formal methods [Smith&99].

3.2.2 VDMTools

Most components of the VDMTools tool suite are themselves developed using VDM.
This development has been made at IFAD in Denmark and CSK in Japan [Fitzgerald&08a].

3.2.3 ISEPUMS

In a project from the space systems domain, VDM was used to develop a sub-system of
the ground segment, which handled processing of messages communicated to the SPOT4
satellite, an earth observation satellite designed by CNES (French National Space Cen-
tre) and in service since March 1998. The aim of the project was to apply a knowledge
acquisition method3 in combination with a specification of a real-size application. The
combination of a knowledge acquisition method and the use of VDM, with prototyping
and multi-modules capabilities, enabled modeling the complicated system and build a
first complete executable specification in a reasonable time (5 months). The direct use
of the VDM method to build a model immediately revealed the complexity and level
of details of the ground segment, leading to frequent meetings with the domain expert
to clear up the ambiguous points. Furthermore, VDM helped to find the right choice
in terms of abstractions, which results in a smaller system than the one obtained using
classical techniques [Puccetti&99]

3.2.4 A Mission Critical Data Handling Subsystem

The data handling subsystem developed using VDM-SL technology is an input- and
output service of a large data mining application. On the input side of the data handling
subsystem, the arriving messages can be very complex, due to the richness of the mes-
sage syntax and semantics. This leaves the opportunity for highly ambiguous messages
to be send to the system’s, analogous to natural language interpretation. Furthermore, the

3The identification and categorization of relevant domain knowledge.

46 CHAPTER 3. VDM

format of the input messages evolves over time (and in practice, so will the data model
of the data mining application), so the requirements with respect to the maintainability
of the data handling subsystem were very high. Due to the clear need for a very expres-
sive method for specification of the subsystem, VDM-SL was selected (and the IFAD
VDM-SL toolkit) as means to implement the data handling subsystem. The system as
a whole was developed under a fixed-price, fixed-date contract. About 4800 man-hours
(which corresponds to about 10 per cent of the total available project resources) where
spent on the development of the data handling component. From the start of the project,
the data handling subsystem has been in the critical path of the project plan, mainly
due to the sequential nature of the activities. Nevertheless, it was the first subproject
to deliver results, on time, within the allocated budget and was accepted by the client
without a single change. The application of VDM-SL was a major success and the client
has continued to work on the data handling subsystem using VDM-SL and the IFAD
tools [Berg&99b].

3.3 Tool support

To aide development in VDM a commercial tool called VDMTools exists, which pro-
vides a wide range of features like: extensive static semantics checking, automatic code
generation, round-trip mapping to UML 1 class diagram, documentation support, test
coverage analysis and debugging support. The tool is build on top of the IFAD VDM
Toolbox and currently maintained and developed by CSK. The tool has a comprehen-
sive code generator both to c++ and Java it supports up to 95 per ce of the VDM lan-
guage [Fitzgerald&08a]. The integrity checker points out all places where potential run-
time error could happen named proof obligation e.g. check that all operators are applied
correctly. VDMTools enables a model to be split up into multiple files enable concur-
rent model development additional to this is includes a pretty printer that can format the
model and used together with the interpreter for debugging and running the model it can
color the model according to the part executed and collect coverage information. In the
interpreter it has the ability to check invariants, pre and post conditions when execution
the model. A VICE extension to VDMTools exist which enable future modeling of time
and deployment of resources in a distributed architecture. A external plug-in for VICE
exists to enable a graphical representation of the execution. The VDMTools has been
used in many industrial projects: ConGorm, Dust-Expert, The development of VDM-
Tools, TradeOne, Sony/FeliCa Networks etc. [Fitzgerald&08a]. The tool is available
on multiple platforms, e.g. Windows, Linux and Mac. Another open source tool avail-
able is VDMJ, now part of Overture, which is currently being developed. It includes an
parser, type check and an interpreter for debugging. VDMJ is an Java implementation
of a subset of VDMTools and supports VDM-SL and VDM++.

3.4. VDM CLASSES 47

3.4 VDM Classes

VDM models are structured into classes familiar from the object oriented world. A class
is made up of different blocks that can be arranged arbitrarily and may be empty. Here
follows a short introduction to the content of each block.

Value: Constant values. Instead of using a constant value directly in the model, a value
can be defined. This enhances readability and makes changes effortless.

Types: There are two kinds of types, basic types and constructed types [Fitzgerald&05,
p71]. The basic types refer to primitive data types such as integer, boolean, char,
etc. as found in conventional programming languages. The constructed types, e.g.
union or tuple, are made from primitive types using a type constructor.

Instance variables: Variables constitute the state of an instantiated class and are them-
selves instances of a type.

Functions: A function takes input parameters and produces a result, with no reference
to the instance variables of the object.

Operations: Same as functions, but an operation can modify instance variables and
are thus able to cause side-effects in the model.

Thread: An independent thread of execution for each instance of the class.

Sync: Access to shared data among parallel threads are synchronized using permission
predicates and mutex constraints.

Inheritance in a class hierarchy is denoted by the keyword is subclass of after
the name of the subclass.

Name conflicts occur if several class members with identical names are defined in
a class. This can be resolved by prepending the respective class name to each class
member.

Access modifiers govern the visibility of member declarations within a class and the
scope of a class. Member declarations can be declared private, protected or public.

Private: The member is only reachable from within the class.

Protected: The member is reachable from subclasses in its class hierarchy.

Public: The member is reachable from all classes in the model.

48 CHAPTER 3. VDM

Type Values
bool true, false

nat1 1, 2, 3, ...

nat 0, 1, 2, ...

int ..., -2, -1, 0, 1, ...

rat ..., -1/7, -1/356, ..., 1/3, ...

real ..., -12.78353, ..., 0, ..., 1322.2324, ...

char ′a ′,′ b′, ...,′ 1′,′ 2′, ...,′ +′,′ -′, ...
quote < RED >, < CAR >, < QuoteLit >, ...

token mk token(...)

Table 3.1: Basic types supported in VDM

3.5 Types

A type definition is used to define data types that can be used elsewhere in the model. It
consists of a type name and the definition of the type.

An invariant is a boolean predicate on a data type restricting the values in a data
type by means of an invariant. Thus, by means of a predicate the acceptable values of
the defined type are limited to those where this expression is true [VDMLangMan, p32].

VDM provides the ability to structure data, such as records, collections and se-
quences. VDM uses type constructors to enable creation of new types from the basic
types provided. Table 3.1 shows the basic types available in VDM.

As mentioned above, types representing structured values and collections are build
from the basic types using a type constructor. The available constructors are described
below.

Union types: A union type can be formed by several component types. The formed
union type will contain all values from each of the components.�
--NewUnionType : type1 | type2

NewUnionType : nat | bool
� �
Listing 3.1: Example of a Union type.

Listing 3.1 shows a NewUnionType having the ability to reference a nat or a
bool value.

Product types: The product type brings all values from the composed types together
in composite structures called tuples, which is different from the union type where
all the values are combined. A product type consists of combined types:�
let
address : seq of char * nat * PostalTown =

mk_("Street",5,<Aarhus>) in skip;
� �
Listing 3.2: Example of Product type. An address composed of three fields.

3.6. TEST TRACE 49

Listing 3.2 shows a product type, address. It consists of a street, number and
a town. To create a product type the make constructor, mk , is used.

Record types: A Record type is like a product type but with the ability of naming the
different fields in the record as shown in Listing 3.3.�
Address ::

street: seq of char
number: nat
town : PostalTown

let street = mk_Address("Street",5, <Aarhus>).street in ...
� �
Listing 3.3: let expression creating an instance of the record using the mk com-
mand.]Example of Record type. An Address composed of three types and a let ex-
pression creating an instance of the record using the mk command.

Optional types: The optional type constructor takes any type as an argument and adds
the special value nil to it. For example, the type seq of char may be extended
with the special value nil, as shown in Listing 3.4.�
Name : [seq of char]
� �

Listing 3.4: Example of a optional type.

Object References types: Serves as a reference to objects of given class. Listing 3.5
shows a VDM a class B with an instance variable a whose value is an instance of
class A. Hereby the instance variable a references an instance of the class A.�
class B

instance variables
a : A := new A();

end B
� �
Listing 3.5: Example of the creation of an object.

3.6 Test Trace

Test traces is a feature for expressing test-cases in a compact form for exhaustive test-
ing of a model. By the use of repeat-patterns on traces, it is possible to express that
sequences of operation-calls should be tested in all possible combinations. Since repeat-
patterns may be nested within each other, the risk for combinatorial explosion exists, i.e.
a trace may result in an excessive amount of test-cases. A test case resulting in an error
is caught and if the erroneous test case appears as a subpart of another test case, the re-
maining execution of such a trace is cancelled. Traces are defined in the traces block

50 CHAPTER 3. VDM

of a VDM class. Each trace must have a name, but a single trace may define several
execution paths separated by a semicolon in a sequential order.

traces definitions = ‘traces’, { named trace } ;

named trace = identifier, { ‘/’, identifier }, ‘:’, trace definition list ;

trace definition list = trace definition term, { ‘;’, trace definition term } ;

trace definition term = trace definition
| trace definition term, ‘|’, trace definition ;

trace definition = trace core definition
| trace bindings, trace core definition
| trace core definition, trace repeat pattern
| trace bindings, trace core definition, trace repeat pattern ;

trace core definition = trace apply expression
| trace bracketed expression ;

trace apply expression = identifier, ‘.’, identifier, ‘(’, expression list, ‘)’ ;

trace repeat pattern = ‘*’
| ‘+’
| ‘?’
| ‘{’, numeric literal, ‘}’
| ‘{’, numeric literal, ‘,’ numeric literal, ‘}’ ;

trace bracketed expression = ‘(’, trace definition list, ‘)’ ;

trace bindings = trace binding, { trace binding } ;

trace binding = ‘let’, local definitions, { ‘,’, local definition }, ‘in’
| ‘let’, bind, ‘in’
| ‘let’, bind, ‘be’, ‘st’, expression, ‘in’ ;

The traces syntax shown above is represented as an Abstract Syntax Tree (AST) to
make it available for computational use. The following descriptions present each traces
construct in the context of an AST, e.g. named trace which consist of at least one
identifier followed by a trace definition list, is represented as the NamedTrace
in the AST. It is seen, that NamedTrace defines a name, name, and a trace definition,
defs, as a (seq of char and TraceDefinition, respectively, which corresponds to
identifier and trace definition list in the traces syntax. Hence, the AST is
merely a way to represent language syntax so that a computer can process it.

3.6. TEST TRACE 51

Named trace: A named trace consists of a name and a sequence of trace definitions,
see Listing 3.6.

NamedTrace ::

name : seq of char
defs : TraceDefinition;

Listing 3.6: NamedTrace.

Trace definition: A trace definition consists of a sequence of let or let be ex-
pressions, a test which can be a TraceMethodApply expression of a bracket
expression and a optional repeat pattern.

TraceDefinitionItem ::

bind : seq of TraceBinding

test : TraceCoreDefinition

regexpr : [TraceRepeatPattern];

Listing 3.7: TraceDefinitionItem.

Method apply expression: The method apply expression consists of a variable name
which is the name of an instance of a class whose operation is execute upon and
lastly a sequence of parameters see listing 3.8.

TraceMethodApply ::

variable_name : Identifier

method_name : Identifier

args : seq of Expression;

Listing 3.8: TraceMethodApply.

Repeat pattern:

Zero of more [a*]: Repeat expression a from 0 to a pre-defined maximum value.
If the maximum value is 3, then a would have the trace nil,a, aa, aaa.

One of more [a+]: Repeat expression a from 1 to a pre-defined maximum value.
If the maximum value is 3, then a would have the trace a, a a, a a a.

Zero of one [a?]: Repeat expression a from 0 to 1. The trace of a would then be
nil, a.

52 CHAPTER 3. VDM

Exactly n times [an]: Repeat expression a exactly n times. If n is equal to 4,
then the trace of a would be a a a a.

From n to m times [an,m]: Repeat expression a between n and m times. If n is
equal to 2 and m is equal to 4, the trace of a would be a a, a a a, a a a a.

3.7 Trace Example

A example of some of the possible trace statements is shown in listing 3.9 from line 9
in the class named UseStack. The trace statement at line 12 expanded in listing 3.10 to
show how the interpretor in VDM Tools would execute the trace statement.�

1 class Stack

2 operations
3 public Push3 : nat ==> ()

4 Push3(e) == ...

5 public Pop : () ==> nat
6 Pop() == ...

7 end Stack

8
9 class UseStack

10 instance variables
11 s : Stack := new Stack();

12 traces
13 trace1 : s.Push3(1)*
14 trace2 : s.Push3(1)+

15 trace3 : s.Push3(1)?

16 trace4 : s.Push3(1){2}

17 trace5 : s.Push3(1){0,4}; s.Pop()

18 end UseStack
� �
Listing 3.9: Example of the definition of traces in a class.�

s.Pop()

s.Push3(1); s.Pop()

s.Push3(1); s.Push3(1); s.Pop()

s.Push3(1); s.Push3(1); s.Push3(1); s.Pop()

s.Push3(1); s.Push3(1); s.Push3(1); s.Push3(1); s.Pop()
� �
Listing 3.10: Trace statement expanded from listing 3.9 line 17.

Chapter 4

Static Model Transformation

This chapter describes the transformation rules for each VDM construct chosen to be
part of the static model transformation. The rules are defined in order to enable a trans-
formation between VDM and UML. Each rule use a VDM construct as a base to describe
how the rule successfully transform the VDM construct to UML.

Not all VDM constructs have a concrete representation in UML, hence some VDM
constructs are omitted from the model transformation, e.g. invariants and pre-conditions.
The reason is the different intentions of VDM and UML: UML is a well-defined vi-
sual language, thus the structure and functionality of a system is expressed mainly
by means of diagrams with a degree of rigour [UMLInfrastructure2.1.2, p33]. VDM,
on the contrary, has a mathematical semantics for proving properties about a model
[Fitzgerald&05, p4]. The detailed syntactical statements of a VDM model has little
purpose in a visual representation and will only serve to bloat a UML diagram. The
transformation rules for a static transformation describes how VDM class constructs are
related to certain UML meta-classes comprising UML diagrams.

4.1 Classes

VDM classes have a one-to-one relationship to UML classes.

Transformation Rule 1
VDM classes are mapped as the UML meta-class Class

4.2 Visibility

The UML meta-class VisibilityKind is an enumeration of the different visibilities
an element can have. Of those elements, package is left out because it does not have a
VDM counterpart.

53

54 CHAPTER 4. STATIC MODEL TRANSFORMATION

Transformation Rule 2
The visibility of VDM instance variables, values, functions
and operations are mapped as a subset of the UML enumer-
ation VisibilityKind comprising public, private and
protected.

The VDM static keyword allowing access to classes, values, instance variables,
functions or operations without having a specific instance, is mapped as the isStatic
property of the UML meta-classes Class, Property or Operation respectively.

Transformation Rule 3
VDM static is mapped as the isStatic property of the UML
meta-class Class, Property or Operation respectively.

4.3 Data types

Data types may be defined in a types block of a VDM class. The definition of a data
type within a VDM class resembles the concept of a nested class in UML, except that
instances of data types are identified only by their value in contrast to classes, which may
also be identified by reference. See section 5.1.3 for the rationale behind the decision.

Transformation Rule 4
Data type definitions are mapped as the UML meta-class Class
and are referenced, and thus nested, through the meta-attribute
nestedClassifier of the owning class. Notice that this rule is
not specified or implemented, hence Figure 4.3 is not generated
by the tool made as part of this thesis.

�
1 class Car

2 types
3 Manufacturer = <Mercedes> | <BMW>;

4 instance variables
5 mfacturer : Manufacturer;

6 end Car
� �
Listing 4.1: The VDM class with a value
and an instance variable showed as UML
attributes. Figure 4.1: A UML attribute mfacturer.

Nested class noted by :: on the right.
Listing 4.1 shows a VDM class Car with a data type Manufacturer. Figure 4.3

shows how the instance variable mfacturer of type Manufacturer is mapped as the
association between Car and Car::Manufacturer with the role name mfacturer.
The figure also shows how the data type Manufacturer is mapped as the class Car::-
Manufacturer, i.e. as a nested class of class Car.

4.4. INSTANCE VARIABLES AND VALUES 55

4.4 Instance variables and values

Instance variables and values are defined in the block instance variables and values,
respectively, of a VDM class. They are the attributes (i.e. the properties) of a VDM class
which hold the state of an object. In UML, the attributes of class may be represented as
associations or as attributes.

Transformation Rule 5
Instance variable and value definitions are mapped as the UML
meta-class Association, if:

5 a: The type is an object reference type, or

5 b: The type is not a basic data type [Fitzgerald&05, p64,71].

Listing 4.2 shows VDM classes Order and Customer. The instance variable customer
is of type Customer and is thus identified from a class, i.e. its type is an object reference.
Figure 4.4 shows the corresponding UML class diagram for Order and Customer. The
association between Order and Customer is the instance variable customer (rule 5 a).
The class Order::OrderIdType is the data type OrderIdType prefixed Order be-
cause it is a nested class. The association between Order::OrderIdType and Order

is the value id, as indicated by the name and multiplicity at the Order::OrderIdType
end of the association (rule 5 b).�

1 class Order

2 types
3 OrderIdType = seq of nat;
4 values
5 id : OrderIdType = [1,2,3,4,5];

6
7 instance variables
8 customer : Customer;

9
10 end Order

11
12 class Customer

13 instance variables
14 name : seq of char;
15 end Customer
� �

Listing 4.2: VDM classes with instance
variables showing a UML association.

Figure 4.2: A UML association

56 CHAPTER 4. STATIC MODEL TRANSFORMATION

Transformation Rule 6
Instance variable and value definitions are mapped as the UML
meta-class Property [UMLSuperstructure2.1.2, p48,p139], if
the type is a basic data type [Fitzgerald&05, p71]. Instance
variables and values are distinguished by the meta-attribute
isReadOnly. Notice: rules 9 and 12 is an exception to this rule.

VDM concept Property::isReadOnly

Instance variables false

Values true

Table 4.1: The meta-attribute isReadOnly distinguishes
instance variables and values

Transformation Rule 7
The initial value of instance variables and values definitions
are mapped as the property default of the UML meta-class
Property.

Transformation Rule 8
The VDM optional type is mapped as the UML meta-class
MultiplicityElement with the properties lower = 0 and
upper = 1.

Listing 4.3 shows a VDM class Address which have a value zip and an instance
variable houseNumber, both of the basic type nat. Both zip and houseNumber are
mapped as attributes of the corresponding UML class Address, as shown in Figure 4.4,
because they are a basic type.�

1 class Address

2 values
3 zip : int = 8000;

4 instance variables
5 houseNumber : nat;
6 end Address
� �

Listing 4.3: The VDM class with a value
and an instance variable showed as UML
attributes.

Figure 4.3: UML attributes.

4.5. UNION TYPES 57

4.5 Union Types

A union type is a union of values from different types [Fitzgerald&05, p74]. Listing 4.4
shows an example of a Person that may be either male, female or bool1, as indicated
by the union gender.

Transformation Rule 9
A union type is mapped as the meta-class Association between
the owning class and the types specified in the union type. The re-
sulting associations are decorated with a textual constraint {xor}.
The constraint is an instance of the meta-class Constraint. No-
tice, that if a member of a union type is a basic type, it is mapped
as a separate UML class. This is an exception to rule 6

Listing 4.4 shows a VDM classes Person, Female and Male. The instance variable
gender is mapped as three associations each connecting Person to one of the possibil-
ities of gender. The textual constraint {xor} spanning all associations will allow only
one possibility to be chosen.�

1 class Person

2 instance variables
3 name : seq of char;
4 age : nat;
5 gender : Male | Female | bool;
6 end Person

7
8 class Male

9 end Male

10 class Female

11 end Female
� �
Listing 4.4: Person with a union type on
gender, Female, Male or bool.

Figure 4.4: A textual constraint {xor}
spanning three associations.

4.6 Product Types

A product type is a composite structure, which consists of tuples of values. Listing 4.5
shows three uses of product type and Figure 4.5 shows the UML counterpart: A product
type declared as a data type will result in subfigure 4.5a. A product type declaration
with more expressive power when visualized in UML is the VDM instance variable
addressWork and addressBook of Listing 4.5, which result in subfigures 4.5b and
4.5c: a n-ary Association which makes it possible to have multiple participants in
an association. Note that part set of Name in line 8 of Listing 4.5 is shown as the
multiplicity of 0..* in Figure 4.5c.

1For the sake of argument, a Person may be regarded false if the gender is indefinable.

58 CHAPTER 4. STATIC MODEL TRANSFORMATION

�
1 class Person

2 types
3 Address = City * County * Street;

4
5 instance variables
6 addressHome : Address;

7 addressWork : City * County * Street;

8 addressBook : City * County * set of Name * Street;

9 age : nat;
10 name : Name;

11
12 end Person
� �

Listing 4.5: Example of a Person where a product type are used to model the
addressWork and addressBook. The addressHome is declared from a explicit type.

Transformation Rule 10
A VDM product type maps to:

10 a: The UML meta-class Class if it is declared as a data type.
See figure 4.5a.

10 b: The UML meta-class Association if it is not defined as
a type (i.e. it is anonymous). See figure 4.5b and 4.5c.

Each association-end that represents an entry in the product type
is named according to the product type. The types constituting
the product type are sorted alphabetically according to the name
of the types used in the product type.

4.7 Collections

VDM define three constructs to model collections:

set: Repetition and order of elements are insignificant, i.e. multiple copies of an
element and the order of elements are disregarded.

seq: Repetition and order of elements are significant, i.e. multiple copies of an element
are distinguishable by the order in which they appear.

seq1: Equal to seq, except that an empty sequence is illegal.

Listing 4.6 shows four VDM classes. Class Ordermodels two sequences, contacts
and subOrders, of which the former must contain at least one element. Class SubOrder
models a set of Product. The two sequences, contacts and subOrders, are mapped
as associations between Order and Contact and Order and SubOrder, respectively,

4.7. COLLECTIONS 59

(a) VDM product type where the data type is explicitly declared.

(b) VDM product type where the type is implicit.

(c) VDM product type represented in UML where the type is both implicit
(addressBook) and explicit (Name). stated

Figure 4.5: UML representation of constructs from Listing 4.5

60 CHAPTER 4. STATIC MODEL TRANSFORMATION

as shown in Figure 4.7. The constraint {ordered} on the associations indicate that the
type is seq and the different multiplicities further differentiates the types as seq and
seq1. The set products are mapped as an association between classes SubOrder and
Product.�

1 class Order

2 instance variables
3 contacts : seq1 of Contact;

4 subOrders : seq of SubOrder;

5 end Order

6
7 class Contact

8 end Contact

9
10 class SubOrder

11 instance variables
12 products : set of Product;

13 end SubOrder

14
15 class Product

16 end Product
� �
Listing 4.6: VDM classes with collections.

Figure 4.6: UML associations.

Transformation Rule 11
The VDM constructs set, seq and seq1 is mapped as the UML
meta-class Association which may be decorated with a textual
constraint defined by the meta-attribute isOrdered2 in addition
to a multiplicity at both ends. Table 11 shows how the above-
mentioned VDM constructs are mapped.

VDM
Ordered

Target Multiplicity
IsUnique

construct -Element

set false lower=0, upper=* true

seq true lower=0, upper=* false

seq1 true lower=1, upper=* false

Table 4.2: Transformation rules for VDM constructs modeling
collections

2The meta-class Association has two attributes of type Property which are the end of an
association. Those ends may be ordered, indicated by meta-attribute Property::isOrdered.

4.8. RELATIONSHIPS 61

4.8 Relationships

The VDM constructs map and inmap are used to model unique relationships between
values of one set, the domain, and another set, the range. The order of elements in the
domain and range are insignificant.

map: Denotes the type of all finite mappings between values of the domain and range.
The relationship between values of the domain and range is many-to-one, i.e. one
or more values of the domain map to exactly one value of the range.

inmap: Denotes the injective version of the first, i.e. a one-to-one relationship one
value from the domain map uniquely to one value in the range.

�
1 class Order

2
3 instance variables
4
5 private charMap: map nat to char;
6 public products: map nat to Product;

7 public barcodes: inmap char to
8 seq of Barcode;

9
10 end Order

11
12 class Product

13 end Product

14 class Barcode

15 end Barcode
� �
Listing 4.7: VDM class with a map show-
ing a UML qualified association.

Figure 4.7: Qualified Associations with the
qualifiers as int and char.

Listing 4.7 shows a VDM class Order with three mappings. Figure 4.8 shows
that all ranges are mapped as separate classes, regardless of their type. In the case of
charMap, this is an exception to rule 6. Observe that nat is mapped as int.

62 CHAPTER 4. STATIC MODEL TRANSFORMATION

(a) Links from Qualifier end are not unique,
Both links from A and B targets 1.

(b) Links from Qualifier end are unique,
only a single link is allowed from a instance
from left to right.

Figure 4.8: The unique property is used to distinguish map from imap. Additional
information can be found on page 148.

Transformation Rule 12
The VDM constructs map and inmap are mapped as the UML
meta-class Association with a qualifier. The domain is spec-
ified by the qualifier, which is located at the source class. The
range is specified by the target class. Notice, that if the range is
specified by a basic type it is mapped as a separate class. This is
an exception to rule 6.

VDM construct
Qualifier end Target class end
isUnique isUnique

map false true

inmap true true

Table 4.3: Transformation rules for VDM constructs modeling
relationships between two sets. See figure 4.8

4.9 Thread

A VDM class with a thread block has an independent thread of control. It corresponds
to an active class in UML.�

1 class SensorController

2 thread
3 while true do
4 skip;
5 end SensorController
� �

Listing 4.8: A VDM class with a thread
definition. Figure 4.9: A UML Active class.

4.10. GENERALIZATION 63

Listing 4.8 shows a VDM class with a thread section, which is mapped as a UML
active class, as shown in Figure 4.9.

Transformation Rule 13
A VDM class with a thread compartment is mapped as the
UML meta-class Class with the meta-attribute isActive set
to true.

4.10 Generalization

A VDM class may inherit several classes using the keyword is subclass of. It is
possible to model generalization in UML, including the notion of multiple inheritance.�

1 class AmphibiousVehicle

2 is subclass of Vechile,

3 MaritimeVessel

4
5 end AmphibiousVehicle

6
7 class Vechile

8 end Vechile

9
10 class MaritimeVessel

11 end MaritimeVessel
� �
Listing 4.9: VDM class with an inheri-
tance.

Figure 4.10: Multiple inheritance in UML.

Listing 4.9 shows a VDM class AmphibiousVehicle that inherits two other classes,
Vehicle and MaritimeVessel. The three classes are mapped as UML classes with
generalization arrows indicating the inheritance relationship between AmphibiousVehicle
and the two other base classes.

Transformation Rule 14
A VDM class with the keyword is subclass of fol-
lowed by class-names is mapped as the UML meta-class
Generalization, with the attributes general and specific

referencing the superclass and subclass, respectively. More
than one subclass results in more than one instance of
Generalization.

4.11 Abstract

A VDM class may delegate function or operation definitions to subclasses, in which case
the class is abstract. An UML abstract class is distinguished from a conventional class
by an italicized name.

64 CHAPTER 4. STATIC MODEL TRANSFORMATION

�
1 class AbstractSensor

2 operations
3
4 public GetValue : () ==> ()

5 GetValue() ==

6 is subclass responsibility;
7
8 end AbstractSensor
� �

Listing 4.10: VDM class with an operation
that is subclass responsibility.

Figure 4.11: A UML Abstract class has an
italicized name.

Listing 4.10 shows a VDM class AbstractSensor with an operation that delegates
its responsibility to a subclass. AbstractSensor is mapped as an UML abstract class,
as shown in Figure 4.11 by the italicized name of the class.

Transformation Rule 15
A VDM class with the keyword is subclass

responsibility as a function or operation body is mapped as
the UML meta-class Class with the meta-attribute isAbstract
set to true.

4.12 Generic classes

VDM generic classes has one or more unbound parameters. Currently this is only de-
fined in the OML AST used in the Overture parser. There is not a complete integration of
VDM generic parameters and thereby no type check or interpreter functionality available
to support this feature at the moment.�

1 class List <[T1, T2]>

2 operations
3
4 Add : T1 ==> ()

5 Add(t) == skip;
6
7 Compare : T1 * T2 ==> bool
8 Compare(t1,t2) == return true;
9

10 Remove : T1 ==> ()

11 Remove(t1) == skip;
12
13 end List
� �

Listing 4.11: A VDM class with template
parameters. Only supported in Overture.

Figure 4.12: A List with template parame-
ters.

Listing 4.11 shows a VDM class List with two template parameters T1 and T2

(<[T1, T2]>). The class List is mapped as a UML class with the two template pa-

4.13. OPERATIONS AND FUNCTIONS 65

rameters enclosed in the dotted rectangle in the upper right corner in figure 4.12.

Transformation Rule 16
A VDM generic class maps to the UML meta-class Class

with the attribute templateSignature referencing a set of
TemplateParameter having the name property set to the name
of the parameter.

4.13 Operations and Functions

A VDM function or operation can be transformed into the UML meta-class Operation.
A function does not change the internal state of the owning class, as opposed to an
operation which may change the internal state of the owning class. Both functions and
operations can take parameters as input and return one value as their output.�

1 class Sensor

2 operations
3 public getValue : () ==> int
4 getValue() == return 1;

5
6 public setId : int ==> ()

7 setId(id) == skip;
8
9 end Sensor
� �

Listing 4.12: A VDM class with two oper-
ations.

Figure 4.13: Sensor with two operations.
The isQuery property is hidden.

Listing 4.12 shows a VDM class Sensor with two operations getValue with a
return parameter int and setId with a parameter id of the type int. The operations
are mapped to a UML class shown in figure 4.13 the property isQuery is not visible
which is the property differencing a operation from a function.

66 CHAPTER 4. STATIC MODEL TRANSFORMATION

Transformation Rule 17
A VDM operation and function are mapped to the UML
meta-class Operation where the property isQuery determine
whether the Operation represents a VDM function or operation:

• true for a function.

• false for a operation.

The return type of a function and operation is mapped collectively
as the property type and the multiplicity3of the Operation

meta-class. The parameters of the operation or function is
mapped to the UML meta-class Parameter represented as the
property ownedParameters of the Operation meta-class.
The name and type of a VDM parameter are mapped to the prop-
erty name, type and the multiplicity3 of the Parameter meta-
class.

3The multiplicity consists of the properties isOrdered,isUnique,lower and upper.

Chapter 5

Static Model Specification

This chapter describes how the transformation rules from chapter 4 are turned into a
VDM model. The chapter begins with an overview of the structure of the static model
transformation. The Abstract Syntax Tree (AST) of UML and related tools are presented
along with a description of how the specification enables a transformation from a VDM
model to a UML model and vice versa. This is followed by a description of how to
merge an abstract VDM and UML model without information loss.

5.1 Abstract Syntax Tree

An AST is an abstract structure which contains only core information, i.e. the VDM
AST do not contain keywords or tokens used in the concrete syntax. The reason is that
the concept of an instance variable is defined as a node in the tree, hence the member
declaration group instance variables do not provide extra information.

The UML AST is inspired from the OML AST (the AST for VDM by Overture),
and as such it consist of VDML-SL type definitions for each UML meta-class. Both the
OML and UML AST can be populated with data originating from source files containing
concrete information. For example, the OML AST can be populated using the Oml
Parser, as shown in Figure 5.4, which parses VDM class files and returns the OML AST
with a specification of the total model. The UML AST can be populated in an similar
way by parsing a UML Model file (XMI).

5.1.1 AST definition to VDM class structure (ASTGen)

Using the types of an AST in a VDM model requires information about the structure
of the AST in order to convert collections of type definitions into classes. The classes
can subsequently be instantiated and populated with concrete information. The Overture
tool ASTGen enables the transformation of a collection of type definitions into a class

67

68 CHAPTER 5. STATIC MODEL SPECIFICATION

structure. It also generates a visitor pattern and creates Java interfaces that correspond to
the abstract VDM classes used in the visitor pattern. The implementation of the visitor
pattern makes it possible to add functionality to visit the AST by adding a virtual function
to the classes in the AST. The tree can then be visited without changing the AST, just
by the use of a reference to the AST [VisitorPattern]. The Java interfaces provides the
ability to implement the instantiated AST directly into Java code. The tool works by
taking a type specification as input in addition to information like a prefix and a output
location also are provided.

Figure 5.1: ASTGen with UML.ast as input.

ASTGen takes an AST file as input containing the AST for a language. For each
type specified in the AST, e.g. B from listing 5.1, ASTGen produces the following:

Two VDM classes: One abstract class and one implementation of the abstract class per
type definition: IUmlA, IUmlB, IUmlC with get and set operations for instance
variables, UmlA, IUmlB and UmlC which inherits the corresponding IUML class
and holds instance variables.

One Java interface: Corresponding to the abstract class mentioned above.

A visitor: An implementation of the Visitor pattern for visiting the each kind of node
in the AST.

Listing 5.1 shows the AST type definitions. This definition defines A, B and C where
B contains a name. All definitions are listed as VDM-SL type definitions. In the top
of the file additional information for ASTGen such as prefixing and output location is
located in addition to a package name and root node. Inheritance is generated from the
union operator |. In this case A = B | C will be equivalent to B and C inheriting A.

5.1. ABSTRACT SYNTAX TREE 69

%prefix Uml;

%package org.overturetool.uml.ast;

%directory "C:\tmp";

%top A;

A = B | C;

B ::

name : seq of char;
C ::

Listing 5.1: AST definition used as input for ASTGen.

In Listing 5.2 the VDM interface class prefixed with IUML is shown which is similar
to the Java interface also generated.�
class IUmlB

is subclass of IUmlA

operations
public getName: () ==> seq of char
getName() == is subclass responsibility;

end IUmlB
� �
Listing 5.2: The VDM TemplateParameter interface class derived from the type de-
fined in listing 5.1.�
class UmlB is subclass of IUmlB

operations
public identity: () ==> seq of char
identity () == return "B";

public accept: IUmlVisitor ==> ()

accept (pVisitor) == pVisitor.visitB(self);
...

instance variables
private ivName : seq of char := []

operations
public getName: () ==> seq of char
getName() == return ivName;

public setName: seq of char ==> ()

setName(parg) == ivName := parg;

end UmlB
� �
Listing 5.3: The implementation of B defined in listing 5.1.

70 CHAPTER 5. STATIC MODEL SPECIFICATION

In Listing 5.3 the implementation class of the B type definition from listing 5.1 is
shown. This class can be used in a specification. Additional to the interface and imple-
mentation classes a visitor is generated at the VDM level.

ASTGen is limited by the Java language since it has to create Java interfaces for each
type definition. As a result of the close bounding to Java ASTGen is limited to single
inheritance. It is possible to specify multiple inheritance as shown in 5.4. Figure 5.2
shows how the types definitions from Listing 5.4 results in multiple inheritance which
ASTGen cannot resolve, since it violates the Java language specification.

A = B | C;

D = B | E;

B ::

name : seq of char;
C ::;

E ::

Listing 5.4: AST definition with multiple definition. Not supported by ASTGen.

Figure 5.2: Shows multiple inheritance. B inherits D and A.

5.1.2 OML AST

The AST for VDM is already made and is available as a part of the Overture project
[Overture07]. The abstract syntax is named Overture Modeling Language (OML) and
it is specified as type definitions in VDM-SL, as shown in Listing 5.5. The entire AST
can be found in Appendix G. The type definitions in the OML AST can be converted
to VDM++ classes, VDM++ interface classes and Java interfaces using ASTGen as ex-
plained in section 5.1.1 above. The resulting VDM++ classes can be used when mod-
eling in VDM++. The Specifications is the root node and it contains a sequence
of classes which is specified as the next node. The node Class consists of new nodes
specified further down in the OML AST.

5.1. ABSTRACT SYNTAX TREE 71

Specifications ::

class_list : seq of Class;

Class ::

identifier : Identifier

generic_types: seq of Type

inheritance_clause : [InheritanceClause]

class_body : seq of DefinitionBlock

system_spec : bool;

InheritanceClause ::

identifier_list : seq of Identifier;

DefinitionBlock =

TypeDefinitions |

ValueDefinitions |

FunctionDefinitions |

OperationDefinitions |

InstanceVariableDefinitions |

Listing 5.5: Abstract syntax of VDM. Overture Modeling Language (OML).

5.1.3 UML AST

The UML AST is inspired by the OML AST and constructed from the UML specifica-
tion [UMLInfrastructure2.1.2, UMLSuperstructure2.1.2], hence it is a flat tree structure
with a root node, comparable to the Specifications node of the OML AST from
Listing 5.5. The UML AST is modeled as VDM-SL type definitions to enable automatic
model-generation using the tool ASTGen as explained in section 5.1.1. The type defi-
nitions are consistent with definitions from the UML Superstructure Specification (USS)
[UMLSuperstructure2.1.2] and UML Infrastructure Specification [UMLInfrastructure2.1.2]
(UIS), which makes intensive use of multiple inheritance that is not supported by AST-
Gen as explained in section 5.1.1. To change the structure into single inheritance some
of the abstrace meta classes e.g. Classifier of the USS and UIS has been replaced
by a specific class representing the classifier (Classifier is an abstract base class of
Class).

Figure 5.3 shows a condensed class diagram from the UIS. The excerpt show the
connections between the UML meta-classes which is used in the UML AST e.g. Class,
Operation, Property etc. as explained on page 150.

The UML AST is constructed from the meta-classes needed in a class diagram. This
means that nodes like: classes, operations, properties, associations, constraints etc. are
considered as nodes in the UML AST. They all have a corresponding meta-class in the
USS and UIS. In Listing 5.6 an example is given of the top level of the AST. The root

72 CHAPTER 5. STATIC MODEL SPECIFICATION

Figure 5.3: UML infrastructure class diagram.

node named Model is specified and it consists of a name and a set of definitions which
is represented by model elements such as Class, Association etc.

Model ::

name : String

definitions : set of ModelElement;

ModelElement = Class | Association |

Constraint | Collaboration;

Listing 5.6: UML toplevel AST

The complete UML AST is specified in appendix E along with a description that
states where each node in the UML AST complies with the USS and UIS.

5.2 Transformation Specification Overview

From a users point-of-view, the model transformation between VDM and UML oc-
curs on the concrete syntaxes. A common approach when working with constructs in
a computer-based language, is to use an AST which definne the abstract syntax (i.e.

5.3. THE TRANSFORMATION PROCESS 73

without tokens etc.). ASTs are often used when writing compilers, because it provides
an easy way of accessing different constructs in a language [ASTFromWikipedia]. In the
case of UML, an AST reduced the amount of information because the concrete syntax
is presented in XML, which produces a lot of overhead. The UML AST defined as part
of this thesis work can be found in Appendix E. The OML AST is located in Appendix
G. The transformation rules specifying how to apply a transformation between the two
ASTs are defined in chapter 4.

5.3 The Transformation Process

This section presents the transformation process that can be applied to a VDM and UML
model. Figure 5.4 gives an overview of the steps involved when applying a transforma-
tion. The figure is supplemented with a walk-through for each transformation direction:
(1) Transforming VDM to UML and (2) Transforming UML to VDM.

Figure 5.4: Overview of components involved in the transformation process.

In Figure 5.4 The solid lines show how a transformation from VDM to UML is
carried out. The dotted line shows how an UML model (stored in an XMI file) is trans-
formed into VDM class files. The rectangular shapes indicate processing and the round
shapes indicates a processing result. The grey rectangular shapes indicate components
written in Java. All other rectangular shapes indicate components written in VDM.

The transformation from VDM to UML consists of the following steps. Each step is
supplemented with a note describing the status immediately after the step:

Step 1 (Oml Parser): The VDM classes are parsed using the OML Parser to a VDM
abstract syntax, i.e. the parser populates the OML AST.

74 CHAPTER 5. STATIC MODEL SPECIFICATION

• Status: An OML AST existed before this thesis work started. It is com-
parable to the UML AST, thus making it possible to compare or transform
between the two.

Step 2 (Vdm2Uml): The OML AST is transformed into an UML abstract syntax using
the Vdm2Uml specification (which is consistent with the transformation rules
from chapter 4).

• Status: The UML abstract syntax is ready to be transformed to a XML struc-
ture.

Step 3 (Uml2Xmi): The UML abstract syntax is transformed into a XML structure
using the Uml2Xmi specification1.

• Status: The XML data required to produce valid XMI is completed.

Step 4 (IO): The XML data is processed and output is a XML document formatted to
comply with the rules for valid XMI structure.

• Status: The XML document which can be imported to a UML 2 and XMI
2.1 compliant tool.

The transformation of an UML model to VDM class files is shown in Figure 5.4 as
dotted arrows. The following steps explains what happens.

Step 1 (Xmi Parser): The XMI file representing the UML model is transformed into a
corresponding XML document (Xml Model).

• Status: The XML data representing the UML model is ready to be trans-
formed to UML abstract syntax.

Step 2 (Xml2Uml): The XML data is transformed into UML abstract syntax, i.e. the
UML AST is populated.

• Status: A UML abstract syntax exist, which is comparable to the VDM ab-
stract syntax.

Step 3 (Uml2Vdm): The UML abstract syntax is transformed into a VDM abstract
syntax using Uml2Vdm2.

• Status: The VDM abstract syntax is ready to be visited by Oml2VppVisitor.

Step 4 (Oml2VppVisitor): Every construct of the VDM abstract syntax is visited by
Oml2VppVisitor, which outputs a VDM class file equivalent to the UML model3.

• Status: A VDM class file equivalent to the UML model has been produced.
1If modeling tools require the XML file to be tool specific this component needs to change and if one

wants to be able to produce different XMI for different UML tools it would be done here.
2Only basic constructs are transformed.
3Only the VDM constructs supported by the transformation in this thesis work.

5.4. TRANSFORMING VDM TO UML 75

5.4 Transforming VDM to UML

The transformation of an abstract VDM model into a corresponding abstract UML model
is modeled in the class Vdm2Uml and based on the transformation rules from chapter
4. Vdm2Uml is called with an OmlSpecification which is the root in the AST for
VDM. It then walks down the tree and gathers information used to create a UmlModel
which is the root of the UML AST.

The interesting part in the transformation of a OML class is the class body which
can consist of multiple definition blocks, e.g. types, values, instance variables,
functions, operations and thread as shown on page 71. All these definition
blocks have to be treated individually since they require a specific transformation, based
on their type. The ValueDefinitions and InstanceVariableDefinitions have
the most significant impact on the visual part of the static structure, since they present
properties and associations that is directly visible in a class diagram. Both blocks are
transformed into UML properties of the corresponding classes or associations according
to rule 6 and rule 5.

The main path through the OmlSpecification is first to find all classes that can be
mapped to UML Classes. When a class is found, it is transformed into a UML class using
the transformation rules from chapter 4. The values and instance variables of the class are
transformed into a corresponding structures in UML. When an InstanceVariable-

Definitions of a data type is found in the body of an OML class, the definition is
transformed into a UML property. The created property will be associated with the
owning class as an attribute according to rule 6 on page 56. When an instance variable
is a class reference type it is transformed into an association, according to rule 5 on page
55. See Figure 5.5 for an overview of the operations involved in the transformation of a
class.

If the instance variable or value represents a product type, union type or map type, the
created property needs additional transformation according to rule 10 on page 58, rule 9
on page 57 and rule 12 on page 62. Instead of being transformed into a property of the
class, they are transformed into associations. An example is the union type explained in
rule 9 on page 57. The union type is a composite type, which can be one of two types
specified in the union, which means that apart from creating the association additional
information needs to be added to the UML model to ensure that only one of the specified
parts in a union type can exist at the time.

76 CHAPTER 5. STATIC MODEL SPECIFICATION

�
1 public init : IOmlSpecifications ==> IUmlModel

2 init(specs) ==

3 (let model = build_uml(specs)

4 in
5 (model.setDefinitions(model.getDefinitions()

6 union associations

7 union constraints);

8 return model;

9);

10);
� �
Listing 5.7: Vdm2Uml init operation.

Figure 5.5: Overview operations/ functions involved the transformation.

The top level of the transformation specified in the Vdm2Uml class is shown in List-
ing 5.7 and its hierarchy position is shown in Figure 5.5. The steps involved in the
transformation are described below:

• First, the build uml operation jumps one level down in the tree to construct the
classes.

• Each class is constructed by build Class, which again jumps one level down to
construct the body of each class. When constructing the body of the classes all
associations are deduced from instance variables and values definitions.

• The instance variables, association and constraints shown in line 6 and 7,
are populated from buildVariable (instance variables) and buildValue
(values) seen in Figure 5.5. The caller of this operation is the build Class op-
eration.

5.4. TRANSFORMING VDM TO UML 77

After the creation of all classes from the OML specification, a UML model is created
from the UML classes and the associations created from values and instance variables
from the OML specification along with the constraints found from union types.

Class ::

identifier : Identifier

generic_types : seq of Type

inheritance_clause : [InheritanceClause]

class_body : seq of DefinitionBlock

system_spec : bool;

Listing 5.8: Abstract syntax of an OML class.

Class ::

name : String

classBody : set of DefinitionBlock

isAbstract : bool
superClass : seq of ClassNameType

visibility : VisibilityKind

isStatic : bool
isActive : bool
templatesignature : [TemplateSignature];

Listing 5.9: Abstract syntax of an UML class.

In Listing 5.8 and 5.9, the OML and UML representation of a class is shown. This
is the first node that needs to be transformed. By the use of rule 1 on page 53 the class
can be transformed into an UML class. Since all classes in VDM exists as public classes
the corresponding UML class will have its visibility set to public.

• Class name: The name of the UML class can be extracted from the OML class
identifier and the super classes for a UML class can be deduced from the inheri-
tance clause.

• Abstract or Active: To deduce if a class should be mapped as abstract or active
it is necessary to look inside the body definition of the OML class, if an operation
is delegated to a subclass, it is an abstract class or if a thread definition exists the
class is mapped as an active class.

78 CHAPTER 5. STATIC MODEL SPECIFICATION

�
1 public build_Class : IOmlClass ==> IUmlClass

2 build_Class(c) ==

3 let name = c.getIdentifier(),

4 inh : [IOmlInheritanceClause] = if c.hasInheritanceClause()

5 then c.getInheritanceClause()

6 else nil,
7 body = c.getClassBody(),

8 isStatic = false,
9 isActive = card {body(i)

10 | i in set inds body

11 & isofclass(IOmlThreadDefinition,body(i))}
12 > 0,

13 dBlock = [let dbs : IOmlDefinitionBlock =

14 body(i) in build_def_b(dbs,name)

15 | i in set inds body],

16 dBlockSet = { d | d in set elems dBlock & d <> nil},
17 isAbstract = hasSubclassResponsibilityDefinition(body),

18 supers = getSuperClasses(inh),

19 visibility =

20 new UmlVisibilityKind(UmlVisibilityKindQuotes‘IQPUBLIC),

21 templateParameters = getGenericTypes(c.getGenericTypes())

22 in
23 return new UmlClass(name,

24 dBlockSet,

25 isAbstract,

26 supers,

27 visibility,

28 isStatic,

29 isActive,

30 templateParameters);
� �
Listing 5.10: Vdm2Uml operation for constructing an UML class.

The build Class operation shown in listing 5.10 is called from the init opera-
tion with all the classes found in the OML specification. The init operation is the entry
point at the transformation. The operation builds a UmlClass from a OmlClass. The
interesting part is how the body of the OML class contributes to the UML class. The
UML class is declared active if a thread definition is found in the body of the OML class
at line 9, and abstract if an operation is found that is subclass responsibility at line 15.
To construct the attributes of the class the values and instance variables definitions are
handled in line 11. The buildVariable operation is shown in Listing 5.11. This oper-
ation is responsible for the transformation of instance variables and is called indirectly4

from build Class shown in figure 5.5.

4The creation of instance variables are indirectly called through build def b which is a utility
function required by the code generator. The build def b redirects the call to buildVariable.

5.4. TRANSFORMING VDM TO UML 79

�
1 public buildVariable : IOmlInstanceVariable * String ==> [IUmlProperty]

2 buildVariable(var,owner) ==

3 let
4 access = var.getAccess(),

5 scope = access.getScope(),

6 assign = var.getAssignmentDefinition(),

7 isStatic = access.getStaticAccess(),

8 name = assign.getIdentifier(),

9 visibility = convertScopeToVisibility(scope),

10 omlType = assign.getType(),

11 multiplicity = Vdm2UmlType‘extractMultiplicity(omlType),

12 type = Vdm2UmlType‘convertPropertyType(omlType,owner),

13 isReadOnly = false,
14 default : [String]= if assign.hasExpression()

15 then getDefaultValue(assign.getExpression())

16 else nil,
17 isComposite = false,
18 isDerived = false,
19 qualifier : [IUmlType] = Vdm2UmlType‘getQualifier(omlType)

20 in
21 (...

22 if not isSimpleType(omlType)

23 then
24 (

25 CreateAssociationFromProperty(property,omlType);

26 return nil
27)

28 else return property;);
� �
Listing 5.11: Creates a property from an instance variable or an association depending
on the type of the instance variable.

When a property is constructed, the OML type of the property decides whether
it should be inserted into the UML model as an attribute of the owning class, or as
an association-end of an association. The decision is based on rule 5 on page 55.
This means that types like class, maps, union types and product types are
all mapped as associations. If a property is of one of the abovementioned types, is
must map as an association. Depending on the type of the property, the operation
CreateAssociationFromProperty is called with the property and the original OML
type:

• Product Type: CreateAssociationFromPropertyProductType

• Union Type: CreateAssociationFromPropertyUnionType

• All other types: CreateAssociationFromPropertyGeneral

When an instance variable of a product type is discovered it must be converted into
an association. This causes the CreateAssociationFromProperty to delegate the

80 CHAPTER 5. STATIC MODEL SPECIFICATION

construction to CreateAssociationFromPropertyProductType (see listing 5.12).
Here, an association is created and stored in the Vdm2Uml class.�

1 public CreateAssociationFromPropertyProductType:

2 IUmlProperty * IOmlType ==> ()

3 CreateAssociationFromPropertyProductType(property,omlType) ==

4 let name : String = property.getName() ,

5 prop : UmlProperty = property

6 props : set of IUmlProperty =

7 dunion {CreateEndProperty(p,name)

8 | p in set {omlType}

9 & isofclass(IOmlProductType,p)}
10 in
11 (prop.setName("");

12 if card props > 1 then
13 associations := associations union
14 {new UmlAssociation(props, {prop},nil,GetNextId())};);
� �

Listing 5.12: Create an association from a Product type.

The association is constructed according to rule 10 on page 58 where each part of
the product type is represented as an end in the association. To achieve this, the product
type and the property (instance variable) name are passed to CreateEndProperty (see
listing 5.13).

5.4. TRANSFORMING VDM TO UML 81

Left type
Right type

ProductType2
Left type right type

ProductType1 A * B * C

Table 5.1: Product type constructed of three types.

�
1 public CreateEndProperty : IOmlType * String ==> set of IUmlProperty

2 CreateEndProperty(t,name) ==

3 (

4 if (isofclass(IOmlProductType,t)) then
5 (

6 let typedType : IOmlProductType = t

7 in
8 return CreateEndProperty(typedType.getLhsType(),name)

9 union CreateEndProperty(typedType.getRhsType(),name);

10)

11 else if (isofclass(IOmlUnionType,t)) then
12 (

13 let typedType : IOmlUnionType = t

14 in
15 return CreateEndProperty(typedType.getLhsType(),name)

16 union CreateEndProperty(typedType.getRhsType(),name);

17)

18 else
19 return {new UmlProperty(name,

20 new UmlVisibilityKind(

21 UmlVisibilityKindQuotes‘IQPRIVATE),

22 Vdm2UmlType‘extractMultiplicity(t),

23 Vdm2UmlType‘convertType(t),

24 ...

25 Vdm2UmlType‘getQualifier(t))};);
� �
Listing 5.13: Create association ends property from a OML type.

The construction of association-end properties for both product and union types are
shown in Listing 5.13. The operation CreateEndProperty is recursive in the sense
that it keeps calling itself until it reaches the base case, which is defined such that the t
at line 6, product type passed to the function is broken down in its left and right side and
when it is no longer a product type the operation terminates and returns a new property
for each recursion.

An example of such a product type can be seen in Table 5.1. The product type in
Table 5.1 is constructed as two product types where the last ProductType2 = (B *

C) is contained in the first ProductType1 as (A * ProductType2). When this
ProductType1 = A * B * C is put into CreateEndProperty (see listing 5.13) it
will recognize the ProductType1 in the first recursion. CreateEndProperty will
then first resolve the right type, which again is a product type leading to the first recur-

82 CHAPTER 5. STATIC MODEL SPECIFICATION

sion. After this type is resolved to two types (B * C) it will create properties from the
B and C type. When returned the properties will be combined with the property created
from ProductType1 left side of the A type. The properties are then tied together into
an association as non-navigable ends.

The transformation of collections are done by manipulating the multiplicity of the
constructed properties. Listing 5.14 shows a snippet of the model setting the multiplicity
for set, seq, seq1, map and imap. The multiplicity element is set according to rule 11
on page 60.�

1 cases true:
2 (isofclass(IOmlSetType,t))->
3 (lower := 0 ; upper := nil ; isOrdered := false),
4 (isofclass(IOmlSeq0Type,t))->
5 (lower :=0 ; upper := nil ; isOrdered := true; isUnique := false),
6 (isofclass(IOmlSeq1Type,t))->
7 (lower := 1 ; upper := nil ; isOrdered := true; isUnique := false),
8 (isofclass(IOmlGeneralMapType,t)),
9 (isofclass(IOmlInjectiveMapType,t))->

10 (lower := 0; upper := nil ; isOrdered := true ; isUnique := false),
11 (isofclass(IOmlOptionalType,t))->
12 (upper := 1 ; lower := 0)

13 end;
� �
Listing 5.14: Setting multiplicity of properties.

Listing 5.14 shows an example of extracting the multiplicity. A set results in a
multiplicity with no upper limit and a lower limit of zero. There are no ordering and all
elements are unique, which corresponds to isUnique=false.

5.5 UML Model to XMI

To transform the UML AST into the XML Metadata Interchange (XMI)5 an abstract
model of a XML file has been made named XML API. This is a simple model structure
that represents an XML document, where elements can have other elements, attributes
and data. This abstract model is then implemented with a visitor pattern that enables
easy implementation of a visitor to print the model to a file stream. In addition to this, a
parser has been modeled to ease the process of parsing an existing file into this abstract
model. The structure of the XML API can be seen in figure 5.6.

5OMG standard for exchanging metadata information via Extensible Markup Language (XML) used
to serialize UML models to different UML modeling tools.

5.5. UML MODEL TO XMI 83

Figure 5.6: Overview of the XML API class structure.

Transforming the UML AST into an XML abstract model is trivial in principle. The
only added information is an identifier for each element and the type of the element.
The identifiers are used to relate elements such as the type of a property, qualifiers of
associations and constraints of an association.�

1 <xsd:element name="c" type="c"/>

2 <xsd:complexType name="c">

3 <xsd:choice minOccurs="0" maxOccurs="unbounded">

4 <xsd:element ref="xmi:Extension"/>

5 </xsd:choice>

6 <xsd:attribute ref="xmi:id"/>

7 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

8 </xsd:complexType>� �
Listing 5.15: XML Schema of Class representation in a XMI document specified in
MOF.

In Listing 5.15 an XML Schema is shown specifying the rules for inserting a class
into a XMI document where name="c" is the name of the class and type="c" corre-
sponds to the complex type defined at line 2. At line 3-5 the optional xmi:Extension is
listed. The attribute reference at line 7 indicated that the attributes from xmi:ObjectAttribs

should be included. The description originates from the MOF XMI specification [MofXmi,
p17]. The schema has included both a name space for UML elements and a name space
for XMI elements:

• uml: http://schema.omg.org/spec/UML/2.0

• xmi: http://schema.omg.org/spec/XMI/2.1

84 CHAPTER 5. STATIC MODEL SPECIFICATION

�
1 <xmi:XMI xmlns:UML="http://schema.omg.org/spec/UML/2.0"

2 xmlns:xmi="http://schema.omg.org/spec/XMI/2.1">

3 <UML:Class name="C1">

4 <feature xmi:type="UML:Attribute" name="a1" visibility="private"/>

5 </UML:Class>

6 </xmi:XMI>� �
Listing 5.16: Class representation in XML specified in MOF.

In Listing 5.16 a single class is inserted into an XMI document by the aid of the
schema specified in listing 5.15. The class is named C1 and has an attribute named
a1 with a private visibility. The same schema for both classes, properties, associations
etc. can be applied the nodes specified in the UML AST. Listing 5.17 shows a snippet
of the process of converting a UML AST Class into a XMI document. The process of
converting the nodes from the UML AST into a XMI document is straightforward.�

1 protected AddClass : IUmlClass ==> ()

2 AddClass (cl) ==

3 (

4 doc.StartE(oe);

5 doc.StartA("isAbstract", Util‘ToStringBool(cl.getIsAbstract()));

6 doc.StartA("isActive",Util‘ToStringBool(cl.getIsActive()));

7 doc.StartA("name",cl.getName());

8 doc.StartA("visibility","public");

9 doc.StartA(ID_TAG,classes(cl.getName()));

10 doc.StartA("xmi:type","uml:Class");

11 ...
� �
Listing 5.17: Converting an abstract UML class to a XML element.

As seen in Listing 5.17, the different information from the UML AST class is mapped
into specific named attributes, e.g. the name of the class in line 7.

5.5.1 XML parser / deparser

To enable a round-trip between a the UML AST and the XMI document a parser need to
be introduced along with a deparser to transform an XML document into the UML AST.

• XML parser to populate the abstract model of the XML document.

• XML deparser (Xml2Uml) enabling the transformation from the abstract XML
document into the UML AST. This is the reverse process of transforming the UML
AST to XMI done be Uml2Xmi.

5.6 Transforming UML to VDM

Transforming a UML document into a VDM model is the reverse process of VDM to
UML. If a transformation from UML to VDM is desired, then all the associations and

5.6. TRANSFORMING UML TO VDM 85

their constraints have to be converted into values and instance variables so they can be
attached the owning class when it is transformed back from a UML class. In Listing
5.18 the initial operation for the UML to VDM transformation process is shown.�

1 public init : IUmlModel ==> IOmlDocument

2 init(model) ==

3 let
4 associations = { a | a in set model.getDefinitions()

5 & isofclass(IUmlAssociation,a)},
6 constraints = { a | a in set model.getDefinitions()

7 & isofclass(IUmlConstraint,a)}
8 in
9 (

10 extractInstanceVarsFromAssociations(associations,constraints);

11 return new OmlDocument(model.getName(),

12 new OmlSpecifications(build_classes(model)),[]););
� �
Listing 5.18: Setting multiplicity of properties.

Listing 5.18 shows how the associations and constraints are first extracted from the
model definitions. Then all instance variables and values represented as associations are
extracted (see line 10) and saved in a local6 map linking a class name to the instance and
value definitions found in the associations. In Figure 5.7 an overview tree is shown of
the Uml2Vdm class. It lists the placement of the operations and functions described in
this section.

Figure 5.7: Overview of the operations and functions described in this section.

�
1 public extractInstanceVarsFromAssociations :

2 set of IUmlAssociation *
3 set of IUmlConstraint ==> ()

4 extractInstanceVarsFromAssociations(associations,constraints) ==

5 let product = -- N-ary association to single product type

6The local map is not described in this chapter. It is named classInstanceVars and further
details can be found in Appendix F.

86 CHAPTER 5. STATIC MODEL SPECIFICATION

6 {a | a in set associations

7 & not hasXorConstraint(constraints,a.getId()) and
8 (card a.getOwnedEnds() +

9 card a.getOwnedNavigableEnds()) > 2},

10 ...

11 in
12 (...

13 for all a in set product do
14 extractProductAssociation(a.getOwnedEnds()

15 union
16 a.getOwnedNavigableEnds()););
� �

Listing 5.19: Extract all associations that represents a product type.

Listing 5.19 shows how an association representing a product type is distinguished
from other associations by the fact that it does not have an xor constraint and more than
two ends. Such associations must have at least three ends: One for the class owning
the product type and at least two others to construct the product type. When a N-ary
association is found, the product type is extracted (line 14-16).�

1 public exstractProductAssociation : set of IUmlProperty ==> ()

2 exstractProductAssociation(props) ==

3 (

4 let ownerEndSet = {p | p in set props & len p.getName() =0},

5 propSeq = Util‘SetToSeq[IUmlProperty](props),

6 pOwnerEnd = hd Util‘SetToSeq[IUmlProperty](ownerEndSet),

7 pTypeEnd = [propSeq(i) | i in set inds propSeq

8 & len propSeq(i).getName() > 0],

9 clName = let t : IUmlClassNameType = pOwnerEnd.getType()

10 in t.getName(),

11 endTypes : seq of IUmlType = Util‘SetToSeq[IUmlType]({p.getType()

12 | p in set elems pTypeEnd}),

13 type : IOmlType = CreateProductType(endTypes)

14 in
15 AddInstanceVarToClass(clName,CreateInstanceVar(hd pTypeEnd,type));

16)

17 pre card props > 0;
� �
Listing 5.20: Extract the association end that owns the product type, convert the other
ends into a product type and store it in a map linked to the owning class.

In listing 5.20 two important things occur: (1) the owner of the product type, the
class where the product type should be placed are found and (2) the product type is cre-
ated from the remaining ends of the association. Only the types of these ends are needed
line 11. The product type is created at line 13 and then added to the owning class through
a class name to definition map at line 15 through the CreateProductType operation.
This makes the operation create the final class definition to include the definitions ex-
tracted as associations from e.g. product types.

5.7. MERGING CHANGES IN VDM AND UML MODELS 87

�
1 private CreateProductType : seq of IUmlType ==> IOmlType

2 CreateProductType(tps) ==

3 let first = hd tps,

4 rest = tl tps,

5 front = ConvertType(first)

6 in
7 if len tps = 1 then
8 return front

9 else
10 return new OmlProductType(front, CreateProductType(rest))

11 pre len tps > 0;
� �
Listing 5.21: Create one product type from the types associated with the association
ends.

The operation in Listing 5.21 is a recursive function that makes a recursion for each
type in tps. Each time the head of the list is chopped of (line 3) and the current type
is converted to the correct VDM type. If a rest exists (rest line 4), it is parsed to the
function itself creating a product type of the rest (line 10). When done one product
type has been created from all the types passed to the operation.

5.7 Merging Changes in VDM and UML Models

Merging a VDM and UML model which both differ, leads to problems such as deter-
mining which is the one that overrules the other. In this section the problem of merging
will be discussed and a solution will be proposed based on the transformation described
earlier in this chapter.

Before a merging process can be completed it is required that the structures that
should be merged are comparable. In this case where an abstract model of VDM and
UML should be compared, it is required first to bring them on the same form. This leads
to the question if the OML AST or UML AST should be used as common base. The
UML side would be preferred since the transformation VDM to UML contains most
features at the time of writing.

In Figure 5.8 a merging process is shown. The VDM model is transformed into an
abstract UML model and then compared with the existing UML model. The result of
this comparison is a change log. This change log is a description of what has changed
and the last modified date-time. The information leads to an estimate of which direction
the classes should be mapped.

A problem occurs, if an operation depends on an instance variable and both change,
but in different models, i.e. the instance variable changes in the UML model and the
operation changes in the VDM model. This leads to multiple merging problems because
the operation is depended on the instance variable. There are two solutions to this issue
(1) Search the OML AST and find the operation, decide whether the instance variable
is used: if not then merge, if it is possible without any problems. (2) A single class is

88 CHAPTER 5. STATIC MODEL SPECIFICATION

Figure 5.8: Merging a VDM and UML model.

declared changed if any part of it is changed and only complete classes can be merged
from one model to another. When the change log is created and the user has decided
which classes should be merged in a certain direction, a merge can take place. However,
it is important to use the original OML AST when updating the VDM source, because
this thesis work only has incorporated a subset of the available VDM constructs. Using
the original OML AST avoids information loss. If only the OML AST is updated or
parts removed, no information will be lost and the changes from the UML model will be
applied to the OML AST. The final part would then be to backup the original files and
write the new merged files.

Chapter 6

Interaction Model
Transformation

In this section, VDM traces are related to UML 2 Sequence Diagrams (SDs) through
model transformation. A significant extension to UML 2 Sequence Diagrams (SD) is
the CombinedFragment which permit the expression of procedural logic in Sequence
Diagrams. It is also possible to nest fragments to an unlimited degree. The expression
of procedural logic in UML 1 SDs was possible using labels on messages, stating a
condition and/or iteration expression. However, An SD could quickly lose its clarity
with too many messages labeled with various conditions and iterations. The Combined-
Fragments of UML 2 mitigates the problem by surrounding entire sets of messages
and supplying a common continuation predicate. In this chapter a description of how
UML Sequence Diagrams (SD) and VDM traces can be combined used in such a way
that they presents the same content is given in section 6.1 which illustrates the possible
connection. Then rules are formed in chapter 6.2 clarifying how specific constructs can
be transformed.

The following uses of SDs in conjunction with VDM traces may be utilized: The
Unified Modeling Language 2 (UML) contains a dynamic view SD for presenting a
dynamic interaction between objects of a system. A SD consists of LifeLines which
presents an instance of a class in the system, Messages which presents the interaction
between objects, CombinedFragment together with InteractionOperand and its
associated Constraint presents a constraint execution of messages. A Combined-

Fragment is in itself a container as the SD which means that nesting are possible it self
two kinds of CombinedFragments are used alt and loop see section 2.6.2 for more
information. The guard of an InteractionOperand the Constraint constrains the
execution of messages associated with it. Practically, to avoid bloating nesting of SD
should be limited to one level only. There by denying nesting of SD inside a Combined-
Fragment.

89

90 CHAPTER 6. INTERACTION MODEL TRANSFORMATION

The following uses of Sequence Diagrams in conjunction with VDM may be uti-
lized:

Traces generation: VDM test cases may be generated automatically from traces, i.e.
compressed representations of test cases. Sequence Diagrams may be utilized to
visualize the resulting test cases from a trace.

Model generation: A specific interaction among objects may be specified by a Se-
quence Diagram and generated the traces part of a VDM model. The interaction
among objects may represent a fragment of a model or test cases.

Diagram generation: The interaction of objects of the traces part of a VDM model
may be visualized as a Sequence Diagram.

To meet the new traces feature of VDM introduced to enable easy regression testing
SDs is regarded as having the greatest value for VDM modelers. By the use of SD both
VDM specialists and ordinary software developers with UML experience will be able to
specify test cases of a model. By transforming SD into a trace statement a trace can be
seen both as a VDM statement or as a visual UML diagram. In this chapter the focus
will be to construct rules to enable a transformation between both of them. From the
rules round trip would be possible. Thus, this thesis pursues the application of Sequence
Diagrams as means for an overview of test cases and the creation of VDM traces from
the visual diagram.

6.1 VDM traces and UML sequence diagrams

VDM traces is an advanced way of specifying a sequence of execution (see section
3.6) and from this point of view a UML sequence diagram must be able to show the
same execution. In figure 6.1 a SD is shown where the corresponding traces statement
is specified in listing 6.1. It can be seen that Messages relates to the MethodApply

Expression in the traces statement and the LifeLines refer to the objects involved in
the execution.

6.2. TRANSFORMATION RULES 91

Figure 6.1: SD showing a simplified trace
statement.

�
class Stack

...

end Stack

class UseStack

instance variables
s : Stack := new Stack();

traces
TracesStack :

s.Reset() ;

let x in set {2,8}

in s.Push(x){1,4};

s.Pop(){1,3}

end UseStack
� �
Listing 6.1: VDM class showing the trace
from figure 6.1.

6.2 Transformation Rules

The transformation rules for an interaction transformation describes, how instances of
certain UML meta-classes are related to constructs of the VDM concrete syntax regard-
ing Trace Definitions [LangManPPTraces]. The syntax definition can be found in section
3.6 on page 49.

6.2.1 Trace placement

The placement of a trace statement is derived from LifeLines of a SD. To deduce which
LifeLine should be the owner of a trace statement a closer look at the Messages of
the SD is needed. Messages consists of a sendEvent and sendReceive representing
a MessageEnd which is of type MessageOccorenceSpecification Mos for short.
Each Mos covers one LifeLine. The owner of the trace statement is the LifeLine

where Messages only origin from.
Figure 6.2 shows the meta-classes involved when deducing the connection between

Message sendEvent and sendReceive by a Lifeline.�
class TracePlacement

functions
private getTraceOwnerName :

seq of Message -> String

getTraceOwnerName(messages) ==

let names : String =

{ let mos : Mos = m.getSendEvent()

in
let lf: LifeLine = mos.getCovered()

in lf.getName()

92 CHAPTER 6. INTERACTION MODEL TRANSFORMATION

Figure 6.2: VDM Meta-classes showing the link between Message and LifeLine.

Figure 6.3: Sequence diagram.

| m in set elems messages}

in
if card names > 1

then undefined
else let name in set names in name;

end TracePlacement
� �
Listing 6.2: Operation to get owner of a trace form the messages involved.

6.2. TRANSFORMATION RULES 93

Transformation Rule 18
The class where the trace is placed is the one from which all
Messages in a SD originates.
An interaction transformation is only possible if all Messages
origin from a single Lifeline.

6.2.2 Trace name

A named trace definition gets it name from its counterpart in UML Interaction which
is the Meta-class holding all Meta-classes conforming a sequence diagram. It is the prop-
erty Name of the Interaction Meta-class that holds the name that can be transformed
to the name of a named trace.

Figure 6.4: Sequence diagram with a
name.

�
class TraceNameEx

traces
TraceName : ...

end TraceNameEx
� �
Listing 6.3: Class with a named trace ac-
ceding to Figure 6.2.2.

Transformation Rule 19
The attribute Name of the UML meta-class Interaction is
mapped as the name of the trace.

6.2.3 Trace Apply Expression

The trace apply expression contains information about which object a certain method
should be executed on and value for the parameters of the method. This informa-
tion is transformed from the SD mainly by the Meta-class Message by the aide of
Mos, LifeLine and CallEvent. Where the LifeLine represents the objects that the
method should be executed upon and the CallEvent references the method that should
be executed through the Mos to the Message.

94 CHAPTER 6. INTERACTION MODEL TRANSFORMATION

Figure 6.5: Sequence diagram with a
single message.

�
class TraceNameEx

traces
TraceName : b.Message1()

end TraceNameEx
� �
Listing 6.4: Class with a named trace and a
single method apply.

Transformation Rule 20
The method name in a trace apply expression is transformed from
the Operation property of the Meta-class CallEvent and the
variable on which the method should be executed is transformed
from the LifeLine at the receive end of the message where a
Mos is linking it to a LifeLine representing the object. The ar-
guments are directly transformed from the Message Meta-class.

6.2.4 Sequencing of trace apply expressions

The apply expressions in a trace is transformed from the SD in the order they are speci-
fied in the SD. This is a one to one transformation between the ordering of Messages in
a SD and the order of method apply expressions in a trace.

Figure 6.6: Sequence diagram.

�
class TraceSequencingEx

traces
traceSequencing :

b.Message1() ;

b.Message2() ;

b.Message3()

end TraceSequencingEx
� �
Listing 6.5: Class with a named trace hav-
ing a sequence of method apply expres-
sions.

Transformation Rule 21
Method apply expressions in a trace are sequenced in the same
order as messages in a SD.

6.2. TRANSFORMATION RULES 95

6.2.5 Trace choice operator

Messages from a SD is transformed into method apply expressions separated by the
choice operator if they are contained in the same CombinedFragment and placed in an
operand each where the CombinedFragment InteractionOperator equals alt.

Figure 6.7: Sequence diagram with loop

fragments.

�
class TraceChoiceEx

traces
TraceChoiceOperator :

b.Message1() |

b.Message2()

end TraceChoiceEx
� �
Listing 6.6: Class with a named trace
showing the choice between two apply ex-
pressions.

Transformation Rule 22
Messages are transformed into method apply expressions sepa-
rated be the choice if they are contained in the same Combined-
Fragment in each their operand where the CombinedFragment
InteractionOperator equals alt.

6.2.6 Repeat Pattern for apply expressions

The repeat pattern is transformed from the UML Meta-class Operand holding the mes-
sage, where the property InteractionConstraint decides the repeat pattern accord-
ing to table 23 and the CombinedFragment where the Operand is contained in having
its InteractionOperator set to loop.

96 CHAPTER 6. INTERACTION MODEL TRANSFORMATION

Figure 6.8: Sequence diagram with alt

fragment.

�
class TraceRepeatPatternEx

traces
traceRepeatPattern :

b.Message1()* ;

b.Message2()+ ;

b.Message3()? ;

b.Message4(){1,5};

b.Message5(){4}

end TraceRepeatPatternEx
� �
Listing 6.7: Class with a named trace
showing repeat patterns.

Transformation Rule 23
The repeat pattern of a apply expression is transformed from
the InteractionConstraint of an Operand contained in
a CombinedFragment where the InteractionOperator

equals loop. The constraint of the Operand holding the mes-
sage specifies how the repeat pattern should be set:

Constraint (Guard)
RepeatPattern

a* a+ a? a{x} a{x,y}
minint 0 1 0 x x
maxint * * 1 x y

Table 6.1: Transformation rules for VDM constructs modeling
collections

6.2.7 Nested sequencing messages

Messages are transformed into method apply expression according to their order and
they are grouped together in brackets with messages that exists in the same Combined-
Fragment where the InteractionOperator equals loop. It is allowed to have
CombinedFragment’s inside other CombinedFragment’s which enables a Message
to be both optional and have a repeat pattern. The Mos associated with a message must
only be associated with one operand in one CombinedFragment.

6.2. TRANSFORMATION RULES 97

Figure 6.9: Class with nested messages in
Combined fragments.

�
class TraceNestedEx

traces
traceNested :

b.Message1() ;

(

b.Message2() ;

b.Message3() |

b.Message4(){2}

)*;

b.Message5()

end TraceNestedEx
� �
Listing 6.8: Class with nested method ap-
ply expressions.

Transformation Rule 24
Messages nested in a fragment of an InteractionOperand

is added the same properties as Messages in the parent(s)
InteractionOperands. The ordering does not change when
they are nested.
This rule only apply to messages contained in a Combined-

Fragment through a InteractionOperand.

Chapter 7

Interaction Model Specification

This chapter gives a description of how the transformation rules from chapter 6 are added
to the existing model transformation described in chapter 5. The chapter begins with a
short description of new constructs in the UML AST and then an introduction of how
UML 2 Sequence Diagram (SD) is related to the nodes in the OML AST. Secondly
the key features of the actual transformation from UML SD to VDM traces is given,
primarily concerning the changes needed to handle SD in the already existing model.
Finally a summary is made discussing what has been specified in the model and which
difficulties had been discovered.

7.1 Subset of UML AST in relation to sequence diagrams

This section shortly describes the constructs of the UML AST used to specify constructs
of a UML SD. References to a detailed description in Appendix E is supplied for each
construct.

The main constructs of the UML AST are shown below:

Interaction An interaction represents a single sequence diagram. It holds the following:
lifelines : set of Lifeline which represents an instance of a class (see
section E.2.2). fragments : set of InteractionFragment an interac-
tion fragment is a piece of an interaction (see section E.2.3). messages : seq

of Message a Message defines a particular communication between Lifelines
of an Interaction (see section E.2.4).

Interaction ::

name : String

lifeLines : set of LifeLine

fragments : set of InteractionFragment

99

100 CHAPTER 7. INTERACTION MODEL SPECIFICATION

messages : seq of Message;

Listing 7.1: AST of a Interaction.

LifeLine Listing 7.2 shows the type LifeLine, which represents an instance of a class
via the optional represents : [Type] (see section E.1.3). If Lifeline do
not reference a class it will be ignored during a transformation.

LifeLine ::

name : String

represents : [Type];

Listing 7.2: AST of a LifeLine.

Message Listing 7.3 shows the type Message of the Interaction, which includes,
but is not limited: sendEvent : Mos references the specification of the send-
ing of the Message and receiveEvent : Mos references the specification of
the reception of the Message.

Message ::

name : String

sendEvent : Mos

sendReceive : Mos

...

Listing 7.3: AST of a Message.

7.2 Transformation Specification Overview

Transforming a UML SD into a VDM trace definition is carried out according to the
rules defined in section 6.2. To illustrate how the rules apply to a SD, a VDM trace
statement is shown in Listing 7.4 and an informal presentation of the populated UML
AST is shown in Listing 7.5. The two Listings are supplemented with Figure 7.1, which
supplies the reader with the link between Listing 7.5 and the SD resulting from the trace
statement in Listing 7.4

7.2. TRANSFORMATION SPECIFICATION OVERVIEW 101

�
class UseStack

instance variables
s : Stack := new Stack();

traces
testTraceStack = s.Reset() ;

s.Push()?;

end UseStack
� �
Listing 7.4: VDM trace statement.

�
NamedTrace

name = "testTraceStack"

defs =

[SequenceDefinition

defs =

[DefinitionItem

test =

MethodApply

variable_name = "s"

method_name = "Reset"

,

DefinitionItem

test =

MethodApply

variable_name = "s"

method_name = "Push"

regexpr = ZeroOrOne

]

]
� �
Listing 7.5: Populated AST showing the
trace from Listing 7.4.

Figure 7.1: Transformation between OML AST and UML SD.

Figure 7.1 shows an example of the link between the OML AST and a UML SD. On
the right side of Figure 7.1 the SD is shown. It consists of the lifelines UseStack and s
: Stack. The message Push is placed inside an InteractionOperand, which has
the interaction operator loop guarded by the expression [0 ; 1].

To the left, the OML AST definitions from Listing 7.5 is shown. Each name from the

102 CHAPTER 7. INTERACTION MODEL SPECIFICATION

definition is linked to the element in the SD that they represent in a trace statement. To
illustrate this, the link to a MethodApply expression represents a Message by having
the variable name set to the name of the life line at the receive end of the message
where the method name is set to the operation that the message represents. (Complies
with rule 20 on page 94). A DefinitionItem represents a MethodApply expres-
sion. If the method apply expression is inside a CombinedFragment of kind loop, the
regexpr of the DefinitionItem is set according to the guard of the operand associ-
ated with the message. (Complies with rule 23 on page 96).

7.3 Transforming UML SD to VDM Trace

The transformation of a UML Sequence Diagram (SD) into a VDM trace definition is
carried out between the UML AST and OML AST. The class Uml2Vdm shown in Figure
5.4 in section 5.3, is extended with new functions implementing the rules from chapter
6.2. Apart from the Uml2Vdm, an extension has been added to the Xml2Uml class, which
handles the population of the UML AST. The extension added to Xml2Uml is carried out
in the same manner as in section 5.5.1.

The transformation process from SD to trace statement can be split up into steps
describing the different stages in the transformation, where messages are used as the
starting point since they specify the ordering:

1. Extract trace name

2. Find owning class of trace

3. Create definitions from messages. Transformation of the CombinedFragment.

• SequenceDefinition: If message is inside a CombinedFragment of
type loop

• ChoiceDefinition: If a message is inside a CombinedFragment of type
alt

4. Extract DefinitionItem from message.

MethodApply: Defines on which object and which method the message repre-
sents.

RepeatPattern: Defines the Constraint of the InteractionOperandwhich
the message is included in.

The name of a trace statement is extracted from the name of an interaction as shown
in Listing 7.6 by the function build trace (Conforms with rule 19 on page 93). Addi-
tional to this the trace definition is built by the function getTraceDefinition which
recursively handles all messages. Finally a name representing the owning class of the

7.3. TRANSFORMING UML SD TO VDM TRACE 103

Figure 7.2: Overview of operations and functions involved in the transformation of a
UML SD.

trace is exstracted. The name is taken from the LifeLine specified by the sendEvent
of the Message (Conforms to rule 18 on page 93).�

1 private build_trace : IUmlInteraction ->

2 map String to IOmlTraceDefinitions

3 build_trace(interaction)==

4 let name = interaction.getName(),

5 messages : seq of IUmlMessage = interaction.getMessages()

6 in
7 let defs : IOmlTraceDefinition =

8 getTraceDefinition(messages, interaction.getFragments(),nil)
9 in

10 let ownerClass in set
11 {m.getSendEvent().getCovered().getRepresents()

12 | m in set elems messages}

13 in
14 {let owr : IUmlClassNameType =ownerClass in owr.getName()

15 |-> new OmlTraceDefinitions([new OmlNamedTrace(name,defs)])};
� �
Listing 7.6: Build a named trace from a interaction diagram.

When the trace definitions are constructed and mapped to a class name they are
attached to the body of its owning class. That is done in the construction of classes
along with definitions of instance variables, values etc.

According to the goals of rule 21 (sequencing on page 94), rule 22 (choice on page
95) and rule 23 (repeat pattern on page 96) the function getTraceDefinition is in-
troduced. The function iterates over messages from the SD. For each found Message, it
is determined if the Message has one of the following states:

104 CHAPTER 7. INTERACTION MODEL SPECIFICATION

• Stand alone Message

• Messages contained in a CombinedFragment of kind loopwith an Interaction-
Operand specifying the repeat pattern.

• Message contained in a CombinedFragment of kind alt where each message
related to an InteractionOperand of the same alt should be joined in a choice
statement.

Common to all messages is the order which is preserved during a transformation. This
also applies to messages sub grouped by a CombinedFragment where the same rule
for ordering applies. The only exception is the CombinedFragment of kind alt where
the ordering can be ignored, since alt implies a choice behavior. Figure 7.3 shows a
state diagram of the three states a Message can end up in, according to its relation to
CombinedFragment and their InteractionOperands.

A state diagram is shown in figure 7.3 presenting the different states a Message

can have according to its placement in a SD. The state diagram is a graphical repre-
sentation of the function shown in listing 7.7. If the current message is a standalone
message, e.g. it is not enclosed by an InteractionOperand, the message can be con-
verted directly into a DefinitionItem with a MessageApply expression inside. If
the current message is enclosed by an InteractionOperand, there are two choices
depending on whether the message is enclosed by a CombinedFragment of loop

or alt kind. If a Message is processed and no other Messages exist in the same
InteractionOperand, the messages found are grouped in a sequence in the same
order they occur in the SD, according to rule 21 on page 94. Listing 7.7 shows a snip-
pet of the getTraceDefinition handling the case where a message is contained in
a CombinedFragment with the kind loop. This conforms to a repeat pattern of a
MessageApply inside a DefinitionItem, according to rule 23 on page 23.

7.3. TRANSFORMING UML SD TO VDM TRACE 105

Figure 7.3: State diagram over the function getTracesDefinition.

106 CHAPTER 7. INTERACTION MODEL SPECIFICATION

�
1 getTraceDefinition : seq of IUmlMessage *
2 set of IUmlInteractionFragment *
3 [IUmlInteractionOperand] -> [IOmlTraceDefinition]

4 getTraceDefinition(msgs,fg,io) ==

5 if len msgs > 0 then
6 (let m = hd msgs,

7 rest = if len msgs > 1 then tl msgs else [],

8 cfg = { f | f in set fg & isofclass(IUmlCombinedFragment,f) },

9 op = getOperand(m,cfg)

10 in
11 (--No current CF is select by a IO

12 if (io = nil and op = nil) or (io = op)

13 then -- no operand => no CF

14 ...

15 else
16 if op <> nil and getCfIoKind(fg,op).getValue() =

17 UmlInteractionOperatorKindQuotes‘IQLOOP

18 then -- CF = Loop

19 let loopDef : IOmlTraceDefinition =

20 getLoopDef(m,op),

21 restDef : [IOmlTraceDefinition] =

22 getTraceDefinition(rest,cfg,op),

23 defs : seq of IOmlTraceDefinition =

24 if restDef <> nil
25 then [loopDef,restDef]

26 else [loopDef],

27 ret : IOmlTraceDefinition =

28 new OmlTraceSequenceDefinition(defs) in ret

29 else
30 ...

31))else nil;
� �
Listing 7.7: Function getTraceDefinition creates a TraceDefinition represent-
ing all messages in the SD.

In listing 7.7 the handling of a Message which is inside a CombinedFragment of
kind loop is shown. It can be seen at line 6 that the current message m is extracted
and the rest presenting the tail list of all messages. In line 9 an Interaction-

Operand for the current message is looked up. If an InteractionOperand exists
and the operand is inside a CombinedFragment of kind loop, the current message m
and the rest of the existing messages rest are dispatched to the getLoopDef function
at line 20. The getLoopDef shown in listing 7.8 create a DefinitionItem with the
required repeat pattern from the operand of the Message. Finally all messages pro-
cessed by getLoopDef and rest (Is processed by the getTraceDefinition itself)
are grouped and returned in a sequence (According to rule 21 on page 94) as shown in
line 24-28, listing 7.7. If instead the CombinedFragment of kind alt had been present,
the rest of messages would be passed back to the getLoopDef function to be processed
accordingly.

7.3. TRANSFORMING UML SD TO VDM TRACE 107

�
1 getLoopDef : IUmlMessage * [IUmlInteractionOperand] ->

2 IOmlTraceDefinition

3 getLoopDef(m,io) ==

4 new OmlTraceDefinitionItem([],

5 getMethodApply(m),

6 getRpEx(io));
� �
Listing 7.8: The function getLoopDef creates a TraceDefinitionItem from a
Message.

In Listing 7.8 a DefinitionItem is created from a method apply expression through
function getMethodApply. The regular expression specifying the repeat pattern is ex-
tracted from the constraint associated with the InteractionOperand.�

1 private getMethodApply : IUmlMessage -> IOmlTraceMethodApply

2 getMethodApply(message) ==

3 let methodName : String =

4 message.getSendReceive().getEvent().getOperation().getName(),

5 variableName : String =

6 message.getSendReceive().getCovered().getName(),

7 args : seq of IOmlExpression = []

8 in
9 new OmlTraceMethodApply(variableName,methodName,args);
� �

Listing 7.9: Function getMethodApply creates a OmlMethodApply from a Message.

The creation of a MethodApply from a Message is shown in listing 7.9 (Complies
to rule 20 on page 94). The name of a Message is extracted in line 4, listing 7.9. The
name is extracted from the Operation which is linked to the Message as skown in line
4. The type of the objects presented in line 4 is as follows:

Message.Mos.CallEvent.Operation.String

The repeat pattern, which is applied to a Message if it belongs to a Combined-

Fragment of kind loop is constructed from the guard of the InteractionOperand
associated with a message. The guard of an InteractionOperand is a constraint
which has two properties:

• minint

• maxint

The repeat pattern of a Message can be created from the minint and maxint of a
guard attached to an InteractionOperand, according to rule 23 on page 96. List-
ing 7.10 shows an example of a guard where minint and maxint is represented as
LiteralInteger. The listing shown a sibset of the getRpEx function. If min=0 and
max is undefined the result would be a repeat pattern that equals ZeroOrMore as stated
in line 11.

108 CHAPTER 7. INTERACTION MODEL SPECIFICATION

�
1 private getRpEx : [IUmlInteractionOperand] -> [IOmlTraceRepeatPattern]

2 getRpEx(iOperand) ==

3 let guard = iOperand.getGuard(),

4 min = if guard.hasMinint()

5 then let tmp : IUmlLiteralInteger =

6 guard.getMinint() in tmp.getValue(),

7 max = if guard.hasMaxint()

8 then let tmp : IUmlLiteralInteger =

9 guard.getMaxint() in tmp.getValue()

10 in if min = 0 and max = nil then
11 new OmlTraceZeroOrMore()

12 else
13 ...
� �

Listing 7.10: A subset of getRpEx showing how a repeat pattern is exstracted from a
guard of an InteractionOperand.

7.3.1 Summary of traces specification

In the above section a description of one of the key features of the SD to trace trans-
formation has been described namely the handling of Messages and their collabora-
tion with CombinedFragments of king loop. The functions partly described in the
above section are build trace, getTraceDefinition, getLoopDef, getRpEx and
getMethodApply as a part of figure 7.1. In addition to this the functions getOperand,
getAltDef and getCfloKind exist and have been fulle specified as well. Before the
transformation can be enables the UML AST needs to be populated, a complete spec-
ification has been made for this as well. During the process of specifying the XML
Document to UML AST some difficulties has been discovered as described in section
2.7 on page 40.

Chapter 8

Transformation implementation

In this chapter first a discussion how test can be performed both the VDM model and the
executable Java source code. It takes into account the fact that tests not only should be
done at the implementation level but also at the specification level. Secondarily the pro-
cess of code generation is presented along with a description of how the transformation
tool fits into the Overture project.

8.1 Testing

VDM++ makes it possible to write invariant, pre- and postconditions which must be
satisfied in order for the model to be valid. However, such statements are written by
developers and are thus prone to errors. Even though it is possible to prove properties
about a model, the risk of unforeseen unknowns is still present, e.g. the model is correct
but it is not modeling the intended real world scenario or an invariant may be wrong. A
way to further mitigate this risk is by executing test-cases against the model and observe
the result. The test-cases may be code-generated and executed on the application level
to increase confidence in the code-generator.

Two types of testing have been taken into consideration (1) Script testing and (2) Unit
testing to be efficient both types should be performed as automated tests. Automated
testing enables test to be performed automatically whenever the system changes. Un-
desired changes can then be identified right after a automatic test have been performed.
Additional to the above a third type of test should be mentioned called regression testing
which is the type of test VDM traces aims to cover. Regression testing is any type of
software testing which seeks to uncover software regressions for instance a automated
system could be setup to run a complete test suite each night to cover side effects from
previous bug fixes. By using regression testing in an automated manner side effects of
bug fixing will be known shortly after correction and the ability to create statistics of
number of known errors can be made to indicate the system quality.

109

110 CHAPTER 8. TRANSFORMATION IMPLEMENTATION

8.1.1 Script testing

A test script is a set of instructions that will be performed on the system under test.
This can be done manually or automatically, by automating the process using a script
or custom written program a series of tests can be performed on the system under test
to unveil undesired behavior. A script could be made to read argument files, test the
system with the arguments and compare the outcome of the execution with result files.
The outcome of such a test can then later be analyzed to show if bugs were discovered.

Figure 8.1: Testing a system with script testing.

8.1.2 Unit test

A unit in software testing can be defined as:

A unit is the smallest possible testable software component.

Generally a unit can be considered as a test in a work breakdown structure, a piece
the can be compiled separately or a piece that fits on a single page or screen. In relation
to VDM a unit can be defined as a:

• function,

• operation or even a

• class.

No matter which type of component is selected as the smallest testable component, unit
testing is a vital level of testing. Since unit test is performed on a small component it
becomes easier to design, record, perform and analyze test results. If during a test a
defect is discovered the relative small size of the component makes it easier to locate
and repair the defect in the component [Burnstein&03]. When designing test cases they
should be designed in a way which makes them independent upon each parts of the
system under test. An important fact is that the test cannot discover all defects in a
system, if a part is not tested or if the test case is incomplete. In the case of VDM
the ideally way to use using Unit test would be to enable the same test cases to be
performed both on the VDM specification level and the Java application level. This
will ensure that the specification and the application reacts in the same way. At the
Java level a JUnit framework exists which provides a freamwork for organicing tests
includeing TestCases and TestSuites. A similar freamwork exist in VDM called

8.2. JAVA CODE-GENERATOR FOR VDM 111

VDMUnit which is a freamwork compatible with JUnit. By code generating test cases
from VDMUnit it becomes posible to execute them as JUnit test cases at the application
level which enables the execution of the same test both at specification and application
level. This however does not detect defects in the code generator or in the test it self.
The construction of test cases could be automated by the use of an argument and result
files. Tests could then be created from an argument and a corresponding desired result
by inserting the following line in a test case:

assertTrue(operation identifier (argument) = desired result)

8.2 Java code-generator for VDM

The code generation process consists of two steps (1) Generate specification to Java and
(2) Inspect, correct and write required stubs.

Generate specification to Java: The code generation are done by using the Java Java
Code generator [CGManJavaPP] of VDM Tools [VDMTools]. The VDM specifi-
cation is generated to Java which result in one class for each class in the specifi-
cation.

Inspect, correct and write required stubs: By inspection it is clear that all classes
not a part of the OML or UML AST e.g Vdm2Uml and Uml2Vdm, need to have
an additional package import since the OML AST is used as an external JAR file
already code generated and compressed into a JAR as a part of Overture. Due
to minor errors in the code generator such as missing return from code generated
cases with no others option a return must be inserted neither as return or
throw of an exception. Both the org.overturetool.parser.jar file and the
VDM.jar file from CSK should be added project buildpath. Then the code needed
to invoke the UML transformation is simple, it consists of a main class enabling
the program to operate as a self contained program alone and a class handling the
invocation of the OML parser and XMI file read/write. Concerning JUnit all VDM
test classes can be code generated as well since VDMUnit is compliant with JUnit
1.3.

8.3 Integrating UML in Overture Tool

The Overture tool has the Eclipse platform as its base which means that the UML trans-
formation should be able to easily plug into the eclipse platform. To enable an easy
plug-in of the UML transformation eclipse has a plug-in architecture that enables easy

112 CHAPTER 8. TRANSFORMATION IMPLEMENTATION

Name
AST level VDM model Java source

Size (kB) Lines Size (kB) Lines Size (kB) Lines

UML.ast 5.262 212 89.767 3556 287.769 9.921
Vdm2Uml.tex 21.684 533 55.728 1.550
Vdm2UmlType.tex 5.172 166 13.341 362
Uml2XmiEAxml.tex 19.391 622 53.992 1.498
Uml2Vdm.tex 26.416 609 76.173 2.128
Xml2UmlModel.tex 24.005 558 82.828 2.306
StdLib.vpp 4.260 143 13.106 359
Oml2Vpp.tex 412 24 1.631 61
Oml2VppVisitor.tex 19.636 681 59.055 1.678
external IO.java 3.653 131
MainClass.java 2.787 118
Translator.java 2.863 96
XmlParser.java 2.947 99
ClassExstractor-
FromTexFiles.java 1.621 65
Total 210.743 6.892 657.494 20.372

Table 8.1: Measure of model size on AST, VDM and Java level.

Name
VDM to Java
Size Lines

UML.ast 320% 278%
Vdm2Uml.tex 257% 290%
Vdm2UmlType.tex 257% 218%
Uml2XmiEAxml.tex 278% 240%
Uml2Vdm.tex 288% 349%
Xml2UmlModel.tex 345% 413%
StdLib.vpp 307% 251%
Oml2Vpp.tex 395% 254%
Oml2VppVisitor.tex 300% 246%
Total 305% 288%

Table 8.2: Percentage increase from VDM to Java.

integration of different features. All Java based supporting tools in Eclipse are all plug-
ins themselves. Plug-ins interact with each other by extension points in the Eclipse
framework.

8.3. INTEGRATING UML IN OVERTURE TOOL 113

8.3.1 Development of the UML Plug-in

All information about a plug-in is stored in a plugin.xml file. Here the name, ver-
sion, provider, runtime requirements, dependencies, extensions and extension points of
the plug-in is placed. The UML transformation plug-in extents the org.eclipse.-

ui.actionSets where a menu is added to eclipse where it is possible to invoke the
transformations (VDM to UML, UML to VDM). The plug-in depends on the JAR files
from the Overture project [OvertureTool] containing the Overture parser and the Over-
ture AST implementation found in appendix G.

Additional to the plug-in a feature need to be created such a feature groups plug-ins
and exposes then as a feature that the update site can provide.

8.3.2 Deployment of the Plug-in

Eclipse has a well developed plug-in distribution system use on the Internet. Here plug-
ins can be download / updated through the Eclipse Software Updates menu. To enable
a plug-in for download through Eclipse an update site must be made and published. A
update site is a web site where all the features containing the plug-ins are stored along
with a description of each plug-in and its dependencies. When the feature is down loaded
all the dependencies are resolved and installed before the feature. When installed Eclipse
need to restart to load the feature properly before use. To enable the easy integration in
Eclipse a Update Site has been created together with the plug-in and feature projects
where all dependencies are specified in the plugin.xml files that makes up the plug-in
projects. The update site is compiled to Eclipse version 3.4.1 Classic version. The plug-
in is located at Eclipse Update Site for VDM-UML transformation [COMUUpdateSite].

http://mt.lausdahl.com/eclipse

Chapter 9

Concluding Remarks

9.1 Achieved Results

The two main goals of this thesis was to investigate the mapping potential between
VDM++ and UML and to devise bidirectional transformation rules for each language
construct. An important subgoal was to construct a prototype of a tool capable of per-
forming a transformation between VDM++ and UML 2 Class Diagrams, and UML 2
Sequence Diagrams and the new VDM++ traces [Santos08]. The two main goals and
associated subgoals were reached at the end of the project with comprehensible support
of both VDM++ and UML 2, in addition to a finalized working tool integrated as an
Eclipse plug-in in the Overture context.

9.1.1 Learning outcome

To accomplish the goals presented in the introductory section 1.5, thorough analyses of
the UML 1, UML 2 and VDM++ notations have been carried out. The analyses resulted
in detailed knowledge of the inner workings of both languages, i.e. their respective con-
crete and abstract syntaxes and their semantics.

The reason for examining UML 1 is that no more than one tool, Rose-VDM++ Link
[RoseMan, CSKCORP], exists, which can perform a model transformation similar to the
one made in this thesis. The tool is based on UML version 1.1, hence knowledge hereof
was required in order to evaluate the quality of the tool in regards to the subset of UML
1 its supports and how well it preserves semantics.

Correspondingly, the reason for examining UML 2 is that the prototype made as
part of this thesis work should support the latest development within UML. Thus, it
was necessary to know the differences between UML 1 and UML 2 in order to clarify
whether any progress has been made on the UML side since Rose-VDM++ Link was
created.

115

116 CHAPTER 9. CONCLUDING REMARKS

The essential part of the model transformation, i.e. the actual mapping from one lan-
guage to another, takes place of the abstract syntax level of the languages. The abstract
syntax representation of VDM was available at the time this thesis work began in the
form of an Abstract Syntax Tree (AST). The corresponding AST for UML had to be
made during this thesis work. To reduce the manual workload, it was chosen to use the
Overture tool ASTGen, which is also used in conjunction with the OML AST, hence the
necessity to construct the UML AST in a fashion similar to the OML AST. This required
investigation of how the OML AST is structured and how ASTGen works.

UML diagrams are exchanged between tools using an XML-based standard main-
tained by the Object Management Group (OMG). It was necessary to investigate this
standard to determine to which degree UML tools adhere to the standard and how they
deviate from it. That is important in order to know which UML tools will be able to
import a UML model produced by the prototype made as part of this thesis. It turned out
that the standard is not used by the tools as intended, hence the knowledge of the stan-
dard was also be utilized to tweak the prototype to satisfy the needs of selected UML
tools.

9.1.2 Concrete achievements

This section describes the concrete achievements of the thesis work. It is structured into
subsections, each devoted to a particular topic.

Comparison of the Rose-VDM++ Link and our prototype

The aim of the model transformation was to construct a tool with capabilities similar to
the tool Rose-VDM++ Link. This thesis work has two important extensions compared
to Rose-VDM++ Link:

Introducing UML 2: Rose-VDM++ Link only supports UML version 1.1 released in
the late 1990s. The tool made in this thesis supports UML version 2.1.2, which
is the latest version at the time of this writing [OMGUMLHomepage]. The tool
made in this thesis has the ability to transform the following types, none of which
is present in Rose-VDM++ Link:

• template parameters of classes (explained in section 4.12).

• data type definitions in a class definition (explained in section 4.3).

• union types as constrained associations (explained in section 4.5).

• product types as n-ary associations (explained in section 4.6).

• active classes (explained in section 4.9).

The tool also support a smaller subset of constructs to be transformed back to the
VDM++ level. An excellent overview table of the supported features is given in
Appendix I.

9.1. ACHIEVED RESULTS 117

Introducing traces: Recent research have resulted in the introduction of the concept
of VDM++ traces [LangManPPTraces, Santos08], which is compact representa-
tions of test-cases for regression testing. This work has also constructed a model
transformation between UML 2 Sequence Diagrams and VDM++ traces.

The use of ASTs in the development

The abstract syntax of VDM++ was available via Overture at the time this thesis work
began. It was supplied as an AST in which language constructs are specified as VDM-
SL types. The UML AST, which describes the UML abstract syntax, is inspired by the
OML AST. The drawback of using ASTs is that it is not directly usable and requires
external tools in order to interpret and populate them with actual data. The advantage
is that constructs that appear in the original source are abstracted away, leaving only
the conceptual, essential elements from the syntax. This makes it easier to focus on the
content, rather than on the form.

FM implies abstracting away information which is not considered important for
achieving core functionality. The model transformation has been specified in VDM++
to abstract away details not directly related to the model transformation and to enable
future refinement of the model. Also, the reduced size of a VDM++ model compared to
an full-scale implementation yield a more easily maintainable software project. Tables
9.1, reproduced and adjusted from section , show an excerpt of the key figures regarding
the advantages of code-generation and the resulting sub-totals. Table 9.1 show that the
use of ASTGen to generate VDM++ classes from the UML AST resulted in no less than
3556 lines of VDM++ model being generated, corresponding to a 1677% difference be-
tween the UML AST (212 lines) and the generated VDM++ classes (3556 lines). In
addition, the entire model transformation consist of a total of 583 VDM++ classes. The
OML AST are responsible for 448 of these, 135 as the result of the UML AST. The
figures in Table 9.1 show the difference between the VDM++ model and corresponding
code-generated Java-classes. Notice the average reduction of approximately two thirds
on manual-work when using code-generation.

Name
AST level VDM model Java source

Size Lines Size Lines Size Lines

UML.ast 5.262 212 89.767 3556 287.769 9.921
Vdm2Uml 21.684 533 55.728 1.550
Uml2Vdm 26.416 609 76.173 2.128
Oml2VppVisitor 19.636 681 59.055 1.678
Subtotal 157.503 5.379 478.725 15.277

Table 9.1: Measure of model size on AST, VDM and Java level. Sizes are given in bytes.

If a transformation had been attempted on the data-layer level of UML diagrams, i.e.
the raw XML, a risk exists that only a single or few UML tools would be supported due

118 CHAPTER 9. CONCLUDING REMARKS

to the discovery of several violations of the standard for diagram exchange, advocated by
OMG. While this is the case for the current implementation (only Enterprise Architect
is supported), the UML AST makes it possible to extend the transformation specifica-
tion according to the UML specification and implement any special requirements from
different UML tools in order to support them.

The combination of using ASTs to capture the abstract language syntax and the
formal specification of the model transformation has yielded an extendible and flexible
solution. The extensible nature of the AST has proven to be the correct solution to
pursuit, due to the quick and easy extension with Sequence Diagram types in the second
phase of the project. In addition, the reuse of the Overture tool ASTGen saved a lot of
manual work writing VDM classes representing the different UML constructs.

Utilized Overture Tools

Two tools, both part of the Overture project, and several utility-tools, made as part this
thesis work, have been utilized to enable going from the data-layer to the abstract syntax
and back again.

The Overture tools used are:

ASTGen: The abstract syntax of VDM++ was made as part of the Overture project and
supplied as VDM-SL types in an AST. The Overture tool ASTGen takes as input
an AST and produces as output one VDM++ class and one corresponding Java
interface for each type found in the AST. The tool has been utilized to generate
VDM++ classes for the UML AST.

OML Parser: The tool parses VDM++ classes and populates the OML AST.

Utility-tools made in this thesis

The utility-tools made during this thesis work comprise:

XML Parser: UML models are represented in an XML structure. The tool parses the
XML structure and produces both VDM++ and Java compliant output, making
it possible to perform a model transformation on the specification level without
code-generating the entire model to Java first.

XML Serializer: The intermediate data structure representing a UML model during
the model transformation must be serialized to correctly formatted XML in order
for UML tools to import it.

Abstract to concrete syntax deparser: The abstract syntax of a VDM++ model is
iterated through by visiting each construct. The tool produces a VDM++ class as
its output, i.e. a notation that complies by the concrete syntax of VDM++.

9.2. FUTURE WORK 119

Extending VDMEditor: The VDM++ specification of the model transformation was
written using Eclipse. A plugin for Eclipse, called VDMEditor, provides a limited
outline of the model, which presented operations and functions of a file with a
single VDM++ class in it. VDMEditor was extended with the capability of sur-
veying a multitude of VDM++ classes within a single file by coloring all keywords
of VDM++.

VDMTools plug-in for Maven: The work of this thesis is to be included in the Over-
ture product family. A plugin for Maven have been made which enable Maven
to execute the type-checker of VDMTools on the model and automatically code-
generate Java files when the specification has changed.

Eclipse plug-in and update site: A plugin for Eclipse and a corresponding update site
has been made, which enables everyone to download, install and run the model
transformation seamlessly.

Testing

The model has also been subject to testing, which increases confidence in the correctness
of the model. The tests are specified in VDM++ and can be run against the model itself
or be code-generated and run against the code-generated model. This help increase
confidence in the model and also in the VDM++ code-generator, i.e. the same tests are
performed on both specification and application level.

Bug-reports

A noticeable by-product of the formal specification of the transformation is the numerous
bugs detected in VDMTools and VDMJ1, which were reported to CSK and Nick Battle
at Fujitsu, respectively [Fujitsu] [CSKCORP]. Both CSK and Fujitsu have been kind
enough to correct the bugs as they surfaced, leading to increased quality of both products.

9.2 Future Work

To reach a higher level of completeness, the transformation tool requires attention in the
areas presented in this section.

The transformation from UML Class Diagrams to VDM++ is not complete. The
overview table in Appendix I shows the extent of the transformation. The rules describ-
ing the transformation are complete, but they have not been formally specified.

Additionally, if a user maintains both a VDM++ and a UML representation of a
software system, and alterations are made to both models, it makes sense to provide

1Type-checker and interpreter, developed as part of the Overture project. Used for continuous testing
to further refine the model.

120 CHAPTER 9. CONCLUDING REMARKS

a facility enabling a merge of two such models. This feature is present in the Rose-
VDM++ Link. However, the merge of UML and VDM++ models is described only
in theory in this thesis work, because it was considered of less importance from an
academic point of view.

The map between VDM++ data types and UML nested classes should be further
investigated. The transformation tool only has the notion of primitive types, e.g. int
and char, hence data types defined explicitly in a VDM++ class definition do not map
as the corresponding UML meta-class DataType. Instead, the VDM++ data types are
treated as UML inner classes. That approach should be subject of a discussion with a
larger part of the VDM community.

The transformation from UML Sequence Diagrams to VDM++ traces has been com-
pleted. A limitation is the let and let be st statements, which require further atten-
tion to fully support a round-trip between VDM and UML Sequence Diagrams. The
other direction, from traces to Sequence Diagrams, remains as future work. However,
the transformation of traces to Sequence Diagrams should be a trivial task since all rules
support this already.

Further investigation of additional UML diagram types could also be carried out to
determine whether other diagram types may be of interest. For example, it would be
interesting to visualize VDM++ class behavior using a UML State Diagram.

Concerning the VICE extension of VDM++, a range of unclarified possibilities exist,
among which the ability to use UML Deployment Diagrams to show distribution of
classes on different CPUs, and the use of UML Sequence Diagram features like timing
constraints and par2 to show time constraints and parallelism [UMLSuperstructure2.1.2,
p538]. In this regard, the use of OMG Systems Modeling Language (SysML) could be of
interest. SysML reuses a subset of UML 2 and provides additional extensions to satisfy
the requirements of the language. SysML is designed to provide simple but powerful
constructs for modeling a wide range of systems engineering problems, i.e. problems
related to the abovementioned [SysML].

9.3 Overall Conclusion

The initial discussion regarding UML and VDM++ concerned how VDM++ could ben-
efit from tapping into the world of visual modeling using UML. The rationale for choos-
ing UML 2 Class Diagrams was mainly due to the fact that Rose-VDM++ Link already
supported them, albeit only version 1.1, hence developers already used UML Class Di-
agrams to a certain extent. The recently introduced concept of traces [Santos08] opened
up the possibility of also connecting UML Sequence Diagrams and VDM++. The ra-
tionale for choosing sequence diagrams and traces for the second phase was the news-
value it could generate around an already new concept. In addition, the combination
of Sequence Diagrams and VDM++ traces should be viewed as a proof-of-concept for

2Denoted that the behavior of multiple operands is being executed C.3.

9.3. OVERALL CONCLUSION 121

observing if the combination increase the understanding of traces in model development
and testing.

In order to determine the differences between UML 1 and UML 2, it was necessary to
study both specifications closely, i.e. the Superstructure and Infrastructure specifications
of UML 1.4.2 [UML1.4.2] and UML 2 [UMLInfrastructure2.1.2] [UMLSuperstructure2.1.2].
Moreover, the VDM++ language specification was thoroughly examined to make sure
the semantics of VDM++ was fully understood. Rose-VDM++ Link is the only tool
available on the market which is able to perform a round-trip between VDM++ and
UML. The mapping specification for Rose-VDM++ Link was also meticulously exam-
ined in order to understand the capabilities of the tool.

To summarize, both main goals have been reached, as described in the following.

VDM++ and UML Class Diagrams

• VDM++ to UML Class Diagram: Transformation rules for all relevant VDM++
constructs have been specified and the constructs can be mapped to a UML
2 Class Diagram, including template parameters, which is only supported by
Overture. The excluded construct comprise invariants, pre- and postcondi-
tions, which were considered irrelevant to the purpose of a visual modeling
language such as UML. Also, data types are not mapped as the UML meta-
class DataType although rules are specified to aid the mapping. The reason
for this was prioritizing of tasks in a tight time-frame.

• UML Class Diagram to VDM++: Transformation rules are specified as in
the VDM++ to UML Class Diagram mapping.

UML Sequence Diagrams and VDM traces:

• UML Sequence Diagram to VDM++ traces: Transformation rules for all
relevant constructs, except let and let be st, have been specified. The
fragments loop and alt of a Sequence Diagram, used to express procedural
logic, map to corresponding VDM++ repeat-patterns of traces.

• VDM++ traces to Sequence Diagram: Due to time constraint no final map-
ping is completed from VDM++ traces to UML Sequence Diagrams. How-
ever, transformation rules stating how to transform VDM++ traces constructs
to Sequence Diagram constructs have been as rules in a natural language.

In order to deliver an executable prototype a number of utility-tools have been made,
e.g. VDMTools plug-in for Maven, Eclipse plug-in, Eclipse Update site, Outline exten-
sion of VDMEditor etc.

The transformation tool has been developed to such an extend, that it has been used
to produce most of the diagrams in this thesis. Even though the transformation is not
complete, it should be seen as a solid starting point both for the completion of the trans-
formation itself and for further development of the connection between VDM++ and

122 CHAPTER 9. CONCLUDING REMARKS

UML modeling. In particular, bidirectional transformation rules have been formulated
for all relevant language constructs and the most complicated rules have been specified
using VDM++ and are part of the prototype. The remaining work of incorporating the
outstanding rules is considered fairly trivial, hence the academic value is limited. How-
ever, it is definitely possible to extend the thesis work presented here, but to do so will
open up entire new research areas.

This thesis work has minimized the distance between VDM and UML with regards
to the model transformation and opened up the possibility for others to take it further.
We sincerely hope, that the tool will enrich the Overture tool-set and that the project will
succeed in making VDM++ accessible even to developers not previously familiar with
formal methods.

References

[ASTFromWikipedia] Wikipedia. Abstract syntax tree http://en.wikipedia.org/-
wiki/Abstract syntax tree. 2008. Description of how an
AST is used by a compiler and constructed by a parser.
[cited at p. 73]

[Berg&99b] Manuel van den Berg and Marcel Verhoef and Mark
Wigmans. Formal Specification and Development of a
Mission Critical Data Handling Subsystem – an Indus-
trial Usage Report. In John Fitzgerald and Peter Gorm
Larsen, editors, VDM in Practice, pages 95–98, Septem-
ber 1999. . [cited at p. 46]

[Burnstein&03] Jean-Francois Collard and Ilene Burnstein. Practical Soft-
ware Testing. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2002. [cited at p. 110]

[CGManJavaPP] The VDM Tool Group. The VDM++ to Java Code Gen-
erator. Technical Report, CSK Systems, January 2008.
[cited at p. 111]

[Christensen07] Thomas John Hoerlyck Christensen. Extending the VDM++
formal specification language with type inference and
generic classes. Master’s thesis, Aarhus University, 2007.
[cited at p. 35]

[COMUUpdateSite] Kenneth Lausdahl and Hans Kristian Lintrup. Thesis
Eclipse Update Site http://mt.lausdahl.com/eclipse. 2008.
Update Site for VDM-UML transformation. [cited at p. 113]

123

124 CHAPTER 9. CONCLUDING REMARKS

[CSKCORP] CSK Holding Corporation. Maintains and further de-
velops of VDMTools http://www.csk.com/index e.html.
2008. [cited at p. 115, 119]

[Cytyc] OMG. Customer Success Story. Cytyc Corporation En-
hances Productivity by Using Rhapsody to Develop Soft-
ware for Pap Test Screening System. http://www.uml.org/-
uml success stories/Rhapsody Cytyc.pdf. [cited at p. 21]

[Dascalu&02] Sergiu Dascalu Peter Hitchcock. An Approach To Inte-
grating Semi-formal and Formal Notations in Software
Specification. Technical Report, Faculty of Computer
Science, Dalhousie University, 6050 University Avenue,
Halifax, NS, B3H lW5, Canada, 1 (902) 494 6449, 2002.
[cited at p. 9, 10, 14, 15]

[DinesBjornerPP] Dines Bjorner. 32 Years of VDM - From Earliest Days
via Adolescence to Maturity. 2006. Power Point presen-
tation http://www.vdmportal.org/twiki/pub/Main/WebHome/-
bjorner-vdm-ipsj-20oct06.pdf. [cited at p. 43]

[EA71] Sparx Systems. Enterprise Architect 7.1. Modeling &
Design Tools for your Enterprise http://www.sparxsystems.com.au/.
[cited at p. 40]

[ECITelecom] ECI Telecom. Customer Success Story. ECI Telecom
Employs I-Logix Rhapsody and UML Graphical Coding
Techniques To Develop Embedded Digital Cross Con-
nect Applications. http://www.uml.org/uml success stories/-
Rhapsody ECITelecom(V1).pdf. [cited at p. 21]

[Fitzgerald&05] John Fitzgerald and Peter Gorm Larsen and Paul Mukher-
jee and Nico Plat and Marcel Verhoef. Validated De-
signs for Object–oriented Systems. Springer, New York,
2005. [cited at p. 9, 33, 34, 35, 43, 47, 53, 55, 56, 57, 135, 139]

[Fitzgerald&08a] John Fitzgerald and Peter Gorm Larsen and Shin Sa-
hara. VDMTools: advances in support for formal mod-
eling in VDM. In , pages 3–11, February 2008. 8 pages.

9.3. OVERALL CONCLUSION 125

[cited at p. 10, 11, 43, 45, 46]

[Fitzgerald&08b] J. S. Fitzgerald and P. G. Larsen and M. Verhoef. Vienna
Development Method. Wiley Encyclopedia of Computer
Science and Engineering, 2008. 11 pages. edited by
Benjamin Wah, John Wiley & Sons, Inc. [cited at p. 43]

[Fujitsu] Nick Battle at Fujitsu Services is responsible for the de-
velopment of VDMJ. http://uk.fujitsu.com/. [cited at p. 11,

119]

[Guelfi&08] Nicolas Guelfi and Benoit Ries. A Semantics of UML2
Class Diagram and Protocol State Machines in Alloy for
Test Selection Analysis. 2008. Submitted for publica-
tion. [cited at p. 14]

[Holloway97] C.Michael Holloway. Why engineers should consider
formal methods. In Proceedings of the 16th AIAA/IEEE
Digital Avionics Systems Conference, pages 1.3–16 –
1.3–22, Irvine CA, October 1997. [cited at p. 9]

[IFAD] IFAD A/S developed and maintained VDMTools until
2004. after which the intellectual property rights for
VDMTools were acquired by CSK Holdings Corpora-
tion, Japan. [cited at p. 44]

[ISOVDM96] P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and
H. Toetenel and D. J. Andrews and J. Dawes and G.
Parkin and others. Information technology – Program-
ming languages, their environments and system software
interfaces – Vienna Development Method – Specifica-
tion Language – Part 1: Base language. December 1996.
[cited at p. 43]

[Kim&05] Soon-Kyeong Kim and Damian Burger and David Car-
rington. An MDA Approach Towards Integrating For-
mal and Informal Modelling Languages. In John Fitzger-
ald, Ian Hayes and Andrzej Tarlecki, editors, FM’2005:
Formal Methods, pages 448–464, FME, Springer, Berlin
Heidelberg, July 2005. [cited at p. 9, 10, 14, 15]

126 CHAPTER 9. CONCLUDING REMARKS

[Knight&97] John C. Knight and Colleen L. Dejong and Matthew S.
Gibble and Lus G. Nakano. Why Are Formal Methods
Not Used More Widely. In Fourth NASA Formal Meth-
ods Workshop, pages 1–12, 1997. [cited at p. 9]

[Konrad&05] Sascha Konrad and Betty Cheng. Automatic Analysis
of Natural Language Properties for UML Models. In
MoDELS’05, pages 48–57, Springer Verlag, 2005. [cited at p. 14]

[Laleau00] Regine Laleau. On the Interest of Combining UML with
the B Formal Method for the Specification of Database
Applications. In ICEIS, pages 56–63, 2000. [cited at p. 9,

14]

[LangManPPTraces] The VDM Tool Group. The VDM++ Language Manual
For VICE with traces extension. Technical Report, CSK
Systems, January 2008. [cited at p. 10, 91, 117]

[McUmber&01] William E. McUmber and Betty H. C. Cheng. A gen-
eral framework for formalizing UML with formal lan-
guages. In ICSE ’01: Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 433–
442, IEEE Computer Society, Washington, DC, USA,
2001. [cited at p. 14]

[Meyer97] Bertrand Meyer. The Next Software Breakthrough. http://-
doi.ieeecomputersociety.org/10.1109/MC.1997.596640, 30(7):113–
114, 1997. [cited at p. 9]

[MofXmi] OMG. MOF 2.0/XMI Mapping, Version 2.1.1. Techni-
cal Report, http://www.omg.org/spec/UML/2.1.2/, 2007.
[cited at p. 83]

[MotionControl] Customer Success Story. Motion Control Adopts Ad-
vanced Software Development Process For Production
of Elevator Control Units Using I-Logix’ Rhapsody. http://-
www.uml.org/uml success stories/ILogix MotionControl(V1).pdf.

9.3. OVERALL CONCLUSION 127

[cited at p. 21]

[ObjectiveControl] Customer Success Story. Objective Control Cuts Devel-
opment Time, Enhances Customer Communication and
Increases Component Re-use with I-Logix’ Rhapsody.
http://www.uml.org/uml success stories/Rhapsody ObjectiveControl(V1).pdf.
[cited at p. 21]

[OMGUMLHomepage] OMG. Unified Modeling Language UML, http://www.omg.org/-
spec/UML/, 2008. OMG Formally Released Versions of
UML and ISO Released Versions of UML. [cited at p. 20,

40, 116]

[Overture07] Overture-Core-Team. Overture Web site. http://www.overturetool.org,
2007. [cited at p. 17, 70]

[OvertureTool] Open-source Tools for Formal Modeling. http://www.overturetool.org.
[cited at p. 11, 44, 113]

[Plat&92] Nico Plat and Peter Gorm Larsen. An Overview of the
ISO/VDM-SL Standard. Sigplan Notices, 27(8):76–82,
August 1992. 7 pages. [cited at p. 10, 43]

[Puccetti&99] Armand Puccetti and Jean Yves Tixadou. Application
of VDM-SL to the Development of the SPOT4 Program-
ming Messages Generator. In John Fitzgerald and Peter
Gorm Larsen, editors, VDM in Practice, pages 127–137,
September 1999. . [cited at p. 45]

[RationalRose] IBM. Rational Rose Product Line. 2008. http://www-
01.ibm.com/software/awdtools/developer/rose/. [cited at p. 20]

[rCOS] rCOS - Refinement of Component and Object Systems
http://demo.iist.unu.edu/rcos/. [cited at p. 41]

[RoseMan] CSK Holding Corporation. VDMTools: The Rose-VDM++
Link, ver.1.1. [cited at p. 14, 115]

[Saiedian96] Hossein Saiedian. An Invitation to Formal Methods.
IEEE Computer, 29(4):16–30, April 1996. Roundtable
with contributions from experts. [cited at p. 9]

128 CHAPTER 9. CONCLUDING REMARKS

[Santos08] Adriana Sucena Santos. VDM++ Test Automation Sup-
port. Master’s thesis, Minho University with exchange
to Engineering College of Arhus, July 2008. [cited at p. 10,

12, 115, 117, 120]

[Schwab] Charles Schwab & Co., Inc. chooses Borland Together
ControlCenter. http://www.uml.org/uml success stories/-
Schwab study.pdf. [cited at p. 21]

[Sendall&03] Shane Sendall Wojtek Kozaczynski. Model Transforma-
tion: The Heart and Soul of Model-Driven Software De-
velopment. IEEE SOFTWARE, 2003. [cited at p. 10]

[Smith&99] Paul R. Smith and Peter Gorm Larsen. Applications of
VDM in Banknote Processing. In John S. Fitzgerald
and Peter Gorm Larsen, editors, VDM in Practice: Proc.
First VDM Workshop 1999, September 1999. Available
at www.vdmportal.org. [cited at p. 45]

[Snook&06] Colin Snook and Michael Butler. UML-B: Formal mod-
eling and design aided by UML. ACM Trans. Softw.
Eng. Methodol., 15(1):92–122, 2006. [cited at p. 9, 14]

[SysML] OMG. OMG Systems Modeling Language (OMG SysML)
http://www.omg.org/spec/SysML/1.1/. 2008. Version
1.1 - with change bars. [cited at p. 120]

[Thales] Customer Success Story. Bringing It All Together: I-
Logix’ Rhapsody UML-based application development
platform combined with services and support aid THALES
in unifying software and systems development across all
12 of its business units. http://www.uml.org/uml success stories/Rhapsody Thales(v1).pdf.
[cited at p. 21]

[ThalesOptronics] Customer Success Story. Thales Optronics Embraces
I-Logix’ Rhapsody To Develop Higher Quality Appli-
cations, Increase Productivity and Shorten Development
Lifecycles. http://www.uml.org/uml success stories/Rhapsody-
ThalesOptronics(V1).pdf. [cited at p. 21]

[Therac25] Wikipedia, the free encyclopedia. Therac-25. 2008. http://-
en.wikipedia.org/wiki/Therac-25. [cited at p. 9]

9.3. OVERALL CONCLUSION 129

[TOPCASED-UML2] TOPCASED-UML2. UML Modeling tool. http://topcased-
mm.gforge.enseeiht.fr/website/modeling/uml/. [cited at p. 41]

[Trane] Customer Success Story. I-Logix Rhapsody Brings Change
in Process, and Productivity Improvements to The Trane
Company. http://www.uml.org/uml success stories/Rhapsody-
Trane(V2).pdf. [cited at p. 21]

[UML1.4.2] OMG. Unified Modeling Language Specification Ver-
sion 1.4.2. Technical Report, http://www.omg.org/spec/-
UML/ISO/19501/PDF/, 2005. This specification is also
available from ISO as ISO/IEC 19501, formal/05-04-01.
[cited at p. 19, 20, 21, 24, 25, 26, 27, 29, 30, 31, 32, 35, 37, 121, 135, 136,

139, 155, 160]

[UML2Tools] UML2 Tools for Eclipse UML2 http://www.eclipse.org/-
modeling/mdt/?project=uml2tools. UML Modeling tool..
[cited at p. 41]

[UMLDI] OMG. Diagram Interchange v1.0 http://www.omg.org/-
cgi-bin/doc?formal/06-04-04. 2004. version 1.0, formal/06-
04-04. [cited at p. 40]

[UMLDistilled] Martin Fowler and Kendall Scott. UML Distilled: A
Brief Guide to the Standard Object Modeling Language.
Addison-Wesley, 2003. [cited at p. 19, 20, 136]

[UMLFromWikipedia] Wikipedia, the free encyclopedia. Unified Modeling Lan-
guage http://en.wikipedia.org/wiki/Unified Modeling Language.
2008. [cited at p. 10]

[UMLInfrastructure2.1.2] OMG. OMG Unified Modeling Language (OMG UML)
Infrastructure, V2.1.2. Technical Report, http://www.omg.org/-
spec/UML/2.1.2/Infrastructure/PDF/, 2007. OMG Avail-
able Specification without Change Bars, formal/2007-
11-04. [cited at p. 10, 22, 23, 53, 71, 121]

[UMLMan] The VDM Tool Group. The Rose-VDM++ Link. Tech-
nical Report, CSK Systems, January 2008. [cited at p. 23,

130 CHAPTER 9. CONCLUDING REMARKS

32]

[UMLSuccess] OMG. UML Success Stories. http://www.uml.org/uml success-
stories/index.htm. [cited at p. 10, 20]

[UMLSuperstructure2.1.2] OMG. OMG Unified Modeling Language (OMG UML)
Superstructure, V2.1.2. Technical Report, http://www.omg.org/-
spec/UML/2.1.2/Infrastructure/PDF/, 2007. OMG Avail-
able Specification without Change Bars, formal/2007-
11-02. [cited at p. 10, 20, 22, 23, 36, 37, 39, 56, 71, 120, 121, 136,

141, 142, 143, 144, 147, 148, 149, 160, 161]

[VDMFromWikipedia] Wikipedia, the free encyclopedia. Vienna Development
Method http://en.wikipedia.org/wiki/Vienna Development Method.
2008. [cited at p. 44]

[VDMLangMan] CSK SYSTEMS CORPORATION. The VDM++ Lan-
guage Manual ver. 1.1. Technical Report, 2008. [cited at p. 48]

[VDMLangManVICE] The VDM++ Language Manual For VICE ver.1.2, CSK
SYSTEMS CORPORATION, 2008. [cited at p. 43]

[VDMTools] CSK. VDMTools homepage. http://www.vdmtools.jp/en/,
2007. pages. . [cited at p. 111]

[VisitorPattern] Wikipedia, the free encyclopedia. Visitor pattern http://-
en.wikipedia.org/wiki/Unified Modeling Language. 2008.
[cited at p. 68]

[VP-UML] Visual Paradigm for UML 6.2. UML Modeling tool.
http://www.visual-paradigm.com/product/vpuml/. [cited at p. 41]

[ZurcherKantolbank] Customer Success Story. Zuercher Kantonalbank Bank-
ing/Finance. http://www.uml.org/uml success stories/-
ZurcherKantolbank2.pdf. [cited at p. 20, 21]

Appendices

131

Appendix A

Overture Workshop 5 in Braga
Portugal

A.1 Participation in Workshop

The Overture core team arrange a workshop at the University of Minho in Braga, Por-
tugal, 8th and 9th of November 2008. The overall topic of this workshop was focus On
Tool Development. The Overture core team invited us to participate and give a presen-
tation of our M.Sc. thesis project.

The goal of the workshop were to develop a wider knowledge base of tool support
for VDM and exercise different aspects of developing software of the Overture open
source platform on top of Eclipse. Aspects covered included:

• Kernel functionality developed on top of the abstract syntax using VDM++ and
with code generation to java .

• User interface functionality focusing on how to develop Eclipse plug-ins.

• Testing using VDMUnit and JUnit of Overture components.

A.2 What did we gain from the Workshop

The workshop was planed in the final phase of our project which meant that we in ad-
vance had worked with the VDMTools and a subset of the Overture components: Over-
ture Parser, the Overture OML AST, ASTGen and VDMJ. This meant that we before
the workshop had a good insight in which tools existed. Participating in the workshop
we got introduced to other tools like Byaccj, jflex, the new Version of VDMUnit and
Maven project management. Both the VDMUnit and Maven did integrate nicely with
the UML transformation project. After the workshop we decided to enrich the VDM

133

134 APPENDIX A. OVERTURE WORKSHOP 5 IN BRAGA PORTUGAL

- Maven integration by implementing a VDMToolMaven plug-in to enable type check
directly in Eclipse followed to the invocation of the code generator for Java if changes
had been made at the specification level. The implementation of the automatic code
generator resulted in multiple upgrade requests to CSK concerning the ability to code
generate single classes and better specification of packages.

A.3 Workshop conclusion

The aim of the workshop were to spread knowledge of the Overture project, try out the
eclipse plug-in platform and introduce the VDMUnit framework. As a result of the work-
shop we gained a lot of knowledge of the Overture project and which tool currently exist
among JFlex and Byaccj, as a part of Overture. We got the UML transformation rear-
ranged into the desired Maven structure and checked in at the repository at SourceForge
located at: Overture source at SF1. Additional to the rearrange of Java code plus VDM
specification we changed all the VDM tests from the old test framework into the new
VDMUnit which supports JUnit 1.3. To raise the Maven structure from the Java level to
the specification level we started development on a VDMTools plug-in for Maven with
the ability to type check and auto code generate.

1Source Forge Overturetool project https://overture.svn.sourceforge.net/svnroot/overture

https://overture.svn.sourceforge.net/svnroot/overture

Appendix B

Omitted UML 1 Constructs

The UML 1 constructs presented in this appendix have been omitted in this thesis for ei-
ther three reasons: first, some exist at a higher level of abstraction and thus leave certain
design decisions open. A tool is not capable of making those design decisions when per-
forming a model transformation. Second, the concepts represented by some constructs
cannot be implemented in VDM, hence the construct has no semantical counterpart in
VDM. Or third, the elements are not considered relevant from an academic point of view.

B.1 Association

VDM does not have the notion of a shared attribute by value. Every object is referred to
via the Object Reference Type [Fitzgerald&05, p78].

Composite aggregate association: The composite aggregate represents a whole/part
relationship, i.e. it is a strong form of aggregation which means that the composite
object has sole responsibility for the creation and destruction of the instances it
owns. An object may be part of at most one composition at a time, thus forming a
directed acyclic graph (DAG) of composite objects. Destruction of a higher level
object will cause a cascading delete on the DAG as an direct implication of the
one-owner property [UML1.4.2, p86].

Shared aggregate association: A shared aggregate exists semantically between an or-
dinary association and a composite association. The shared object may be owned
by several aggregations and it may shift owner over time [UML1.4.2, p86]. The
shared aggregate is tricky because it is not tightly defined [UML1.4.2, p86]. It
is physically impossible for two distinct instances of a class to own the same in-
stance of another class by value. So what exactly does a modeler mean by a
shared aggregation? As Jim Rumbaugh says, ”Think of it as a modeling placebo”

135

136 APPENDIX B. OMITTED UML 1 CONSTRUCTS

[UMLDistilled, p67] and so this thesis exclude the shared aggregate association
due to its undefined nature.

B.2 Dependency

A dependency states that the implementation or functioning of one or more elements
requires the presence of one or more other elements. Dependencies cannot be trans-
formed to VDM, because it denotes a dependency across levels of abstraction. For
example, if two packages are dependent on each other, not at model level, but at im-
plementation level, at thus have a dependency between them, that cannot be represented
in VDM. [UMLSuperstructure2.1.2, p78].

B.3 Derived Element

A derived element is an element, whose value can be directly computed from val-
ues of its enclosing classifier. For example, if a class has an enumeration gender

and a boolean attribute isMale, then either the former or the latter is a derived ele-
ment [UMLSuperstructure2.1.2, 32]. The derived element has been omitted, because a
machine in incapable of deciding whether the value of an element is directly computable
from other values. Such a capability require knowledge of the semantics of the elements
in some form of meta-data associated with the elements.

B.4 Package and subsystem

A package is a generic ordering of classifiers [UMLSuperstructure2.1.2, 123]. The or-
dering is identified by a name, which is the namespace of the package. In UML, pack-
ages may also have visibility. The concept of a package and package visibility is not part
of VDM.

B.5 Association Class

An association class denotes an association with class-like properties such as state and
operations. The semantics of such an association is a combination of the semantics of
an ordinary association and of a class [UML1.4.2, p87]. An association class adds an
extra constraint, in that there can be only one instance of the association class between
any two participating objects. An example is given in Figure B.1. The primary use of
an association class is to emphasize the existence of one instance of a class due to an
association between instances of two other classes. Figure B.2 shows an example of a
design where such an emphasis is practicable.

In figure B.1 an association class can be utilized to denote information specific to
the association itself but not to either two classes, e.g. as it is done in the upper diagram.

B.6. INTERFACE 137

Figure B.1: Association class.

When an instance of a Professor class is associated with an instance of a Student class,
there will also be an instance of a ThesisProject class. The relationship could also be
modeled as in the lower diagram. There is a subtle difference between the two diagrams.
In the upper diagram, the case of a thesis written by more than one Student will cause
duplicate instances of ThesisProject to exist. That is not the case in the lower diagram
where a single ThesisProject may be associated to two Students, thus the correct design
decision here is to not use an association class.

In figure B.2 a the classes Person and Skill with association class Competence as
the association between them. When an association between an instance of Person and
Skill exist an instance of Competence also exist. Where could Competence go if it were
an ordinary class? Placing it between Person and Skill is meaningless since a Person
is expected to first have a skill and then a level of competence in exercising that skill
(middle diagram). The main difference between the topmost and bottom diagram is that
the bottom suggests that only Skill knows about Competence. That decision is left open
in the topmost diagram. Common to both examples is the fact, that association classes
leaves the design-decision of the exact implementation of the association class open.
Thus it is not directly usable in the context of this thesis.

B.6 Interface

An abstract class with no implementation is semantically the same as an interface. An
interface specifies the externally visible operations by a classifier that implements it.
An interface contains no attributes or outgoing connections (i.e. an interface may be the
target of a one-way connection). VDM do not have the concept of interfaces, only of

138 APPENDIX B. OMITTED UML 1 CONSTRUCTS

Figure B.2: Denotes an association class and how it can be realized.

abstract classes, which suffice due to the opening sentence of this section.

B.7 Realization

Realization is best described by relating it to generalization: Generalization connects a
subclass to a superclass, hence it is another name for inheritance. Realization connects
a class to an interface, hence it is another name for implementation. Since interfaces do
not exist in VDM, realization is of no interest in this thesis.

B.8 Attributes of metaclass Class

A classifier has a number of attributes that dictates the role of the classifer. Common
to both regarding VDM is that VDM do not pose any restrictions on what modelers are
allowed to do with a VDM class.

isRoot: Specifies whether the classifier may inherit from other classifiers or not. A
value of true states a lowest level superclass in a class hierarchy.

isLeaf: Specifies whether the classifier may be inherited or not. A value of true state
that derivation from the class is illegal.

visibility: Denotes the visibility of a class. However, VDM classes are always public.

B.9. CONCURRENCY 139

B.9 Concurrency

The enumeration CallConcurrencyKind defines three types of concurrent behavior a
class may utilize [UML1.4.2, p102]. The different types of behavior can be modeled in
VDM using history counters [Fitzgerald&05, p280] but have been omitted due to lack
of visual benefit.

sequential: Callers must coordinate so that only one call to an Instance (on any se-
quential Operation) may be outstanding at once.

guarded: Multiple calls from concurrent threads may occur simultaneously to one
Instance (on any guarded Operation), but only one is allowed to commence.

concurrent: Multiple calls from concurrent threads may occur simultaneously to one
instance (on any concurrent Operation). All of them may proceed concurrently
with correct semantics.

B.10 DataType

The meta-class DataType represents the general notion of being a data type (i.e., a
type whose instances are identified only by their value). A primitive type is a data type
implemented by the underlying infrastructure and made available for modeling. Typical
use of data types would be to represent programming language primitive types, e.g. int,
char, etc. Data type definitions in a VDM class definition are not mapped as the meta-
class DataType. They are instead mapped as UML inner classes, because they resemble
an inner class more than a simple data type.

Appendix C

Omitted UML 2 Constructs

The UML 2 constructs presented in this appendix have been omitted in this thesis for ei-
ther three reasons: first, some exist at a higher level of abstraction and thus leave certain
design decisions open. A tool is not capable of making those design decisions when per-
forming a model transformation. Second, the concepts represented by some constructs
cannot be implemented in VDM, hence the construct has no semantical counterpart in
VDM. Or third, the elements are not considered relevant from an academic point of view.

C.1 Internal Structure of a Class

Specifies that certain classes are parts of another class, i.e. the parts do not have the same
semantic meaning if found outside the scope of the owning class. This is an abstraction
not applicable to VDM because it involves unmade design decisions that cannot be re-
solved by a machine [UMLSuperstructure2.1.2, p201].

C.2 Message kind

The meta-class MessageKind is an enumeration of the following values:

complete: Origin and target of message is known.

lost: Origin of message is known, but target is unknown.

found: Origin of message is unknown, but target is known.

asynchronous signal: Designates creation of another lifeline object.

delete: Designating the termination of another lifeline.

reply: Designating a reply message to an operation call.

141

142 APPENDIX C. OMITTED UML 2 CONSTRUCTS

(a) Lost. (b) Found.

Figure C.1: Messages Lost and Found [UMLSuperstructure2.1.2, p524].

The enumeration has no practical use in relation to VDM and UML SD, because only
VDM traces are considered, thus any potential use of the semantics no longer apply.

C.2.1 Part decomposition

A message that points back to its originating object can represent a recursive mes-
sage or a message calling another method on the same object. A more decorative way
to show more than one lifeline stemming from an object, is to use part decomposi-
tion [UMLSuperstructure2.1.2, p513]. Figure C.2 shows an object of a class with an
important internal structure. Part Decomposition can be utilized to describe the behavior
of that internal structure.

Figure C.2: Port1 and Port2 represents the UML 2 concept Port, which specifies a dis-
tinct interaction point on an object lifeline [UMLSuperstructure2.1.2, p196]

C.3. FRAGMENT 143

C.3 Fragment

The following fragments are not applicable in the context of this thesis. They are ab-
stractions useful to humans but not to a model transformation.

Negative (neg): Denotes an invalid series of messages.

Ignore (ignore): Indicates that one or more message types are of no interest even if
they occur. These message types can be considered insignificant and are implicitly
ignored if they appear in a corresponding execution, i.e. the execution context
modeled by the Sequence Diagram will ignore the message types because they are
of no interest to the current execution, however, they may be significant in another
context [UMLSuperstructure2.1.2, p489].

Consider (consider): A consider operator is in effect the opposite of the ignore oper-
ator, i.e. any message not present in the consider operator should be ignored.

Break (break): A break represents a behavior that is performed instead of the re-
mainder of the enclosing fragment, thus it can be thought of as a way to model
exception handling. If the guard of the break evaluates to true the break operand is
executed and the rest of the enclosing sequence is ignored. If there is no guard the
choice between a break and the remainder of the fragment is non-deterministic.

Parallel (par): Denotes that the behavior of multiple operands is being executed in
parallel, i.e. each operand in the fragment represents a thread of execution done
in parallel. The contents of each operand may be interleaved arbitrarily as long as
the ordering imposed by each operand as such is respected. A notation shorthand
for parallel combined fragments is Coregion, as showed in Figure C.3.

Figure C.3: The method calls m2 and m3 may appear in any order
[UMLSuperstructure2.1.2, p522].

Weak Sequencing (seq): Denotes an sequence of messages that can occur on one or
more lifelines. There is no decided order of messages within a seq that do not

144 APPENDIX C. OMITTED UML 2 CONSTRUCTS

share the same lifeline. The only requirement is that all the events in a preced-
ing operand must be completed before the following operand can start. Weak
sequencing may be decorated with Continuations (see Alternative (alt)).

Option (opt): Denotes a binary choice of behavior where either nothing happens or
the operand happens. It is equivalent to an if-then construct.

Strict Sequencing (strict): Encloses a series of messages which must be processed in
the given order. It is a stronger notion of weak sequencing. Strict sequencing may
be decorated with Continuations (see Alternative (alt)).

Critical Region (critical): A critical section declares an atomic subsequence which
cannot be interleaved by any participant within the enclosure. Other operands (e.g.
par) may imply the possibility to interleave a critical region, but this is prevented.

Figure C.4: Example of a parallel and critical region to denote concurrent emergency
calls and focus on forwarding 911 calls [UMLSuperstructure2.1.2, p486]

Assertion (assert): Denotes an assertion of the messages within the enclosure. The
sequences of the operand of the assertion are the only valid continuations. All
other continuations result in an invalid trace.

C.3.1 ConsiderIgnore Fragment

A ConsiderIgnoreFragment is a kind of combined fragment with an interaction op-
erator of kind Ignore/Consider [UMLSuperstructure2.1.2, p489]. The interaction

C.3. FRAGMENT 145

operator ignore designates that there are some message types that are not shown within
this combined fragment. These message types can be considered insignificant and are
implicitly ignored if they appear in a corresponding execution. Alternatively, one can
understand ignore to mean that the message types that are ignored can appear any-
where in the traces. Conversely, the interaction operator consider designates which
messages should be considered within this combined fragment. The concept cannot be
used in this thesis, because marking particular messages as more or less significant than
other messages has no meaning in relation to VDM traces.

C.3.2 InteractionUse

If a CombinedFragment is used in multiple Sequence Diagrams, it may be represented
more clearly as an InteractionUse. An InteractionUse is a form of z-layering or zooming
capability which allows the modeler to refer to a CombinedFragment instead of drawing
it repeatedly. The InteractionUse is shown as a CombinedFragment symbol where the
operator is called ref.

Appendix D

Significant changes to the UML
meta-model

This chapter contains a description of the changes of the UML meta-model from UML
1 to UML 2. The changes do not have a direct impact for the user of UML, because
the changes are on the abstract syntax part of the UML meta-model. However, they are
interesting in order to better understand some of the design decisions made by UML tool
vendors (e.g. the use of Collaboration by EA in UML 2 SDs, see section 2.6.2 and
appendix E.2.1 for further information).

D.1 Deprecated UML 1 meta-classes

ScopeKind: The meta-class has been replaced with the meta-attribute isStatic.
ScopeKind was an enumeration of the values {instance} and {classifier}
and was used by meta-classes Feature and AssociationEnd, which now use
isStatic instead.

AssociationEnd: The meta-class has been demoted to the attribute memberEnd of
Association [UMLSuperstructure2.1.2, p62].

Multiplicity: The meta-class has been replaced with the abstract meta-class Multiplicity-
Element, which other meta-classes inherit in order to have a multiplicity. In
UML 1, various meta-classes had attributes of type Multiplicity in order to
specify multiplicity. In UML 2, that attribute is supplied by inheritance instead
[UMLSuperstructure2.1.2, p110].

Collaboration: In UML 2, the meta-class Collaboration has been revoked and
Interaction has been promoted to encompass in general any kind of interaction
[UMLSuperstructure2.1.2, p501]. It is worth noticing that Interaction is a

147

148 APPENDIX D. SIGNIFICANT CHANGES TO THE UML META-MODEL

subclass of Classifier, which is also the superclass of Class from CD. Hence,
any of the two meta-classes may be put instead of Classifier.

ClassifierRole: Participants of Interaction is modeled by Lifelines instead of
ClassifierRoles [UMLSuperstructure2.1.2, p499].

Sequencing of messages: The sequencing of messages by sequence numbers as used
in UML 1 SD has been moved to Communication Diagrams, which correspond to
simple UML 2 SDs. CombinedFragment is used to indicate sequencing in UML
2 SD.

D.2 New UML 2 meta-classes

ValueSpecification: The meta-class has been added in UML 2. A ValueSpecification

is used to identify a value or values in a model. The range of a ValueSpecification
may be restricted by Constraint, which specifies additional semantics for one or
more elements [UMLSuperstructure2.1.2, p74]. The use of ValueSpecification
is a further refinement of the UML meta-model.

isUnique: For a multi-valued multiplicity, this meta-attribute specifies whether the
values in an instantiation of the element are unique, i.e. whether it is possible to
have several links associating the same set of instances [UMLSuperstructure2.1.2,
p110].

Appendix E

Specification of the UML
Abstract Representation

This appendix describes how the UML AST corresponds to the UML Superstructure
Specification [UMLSuperstructure2.1.2]. A future description on how the AST is com-
prised and a description on tool support for creating a AST to use in VDM is described in
section 5.1 where a walk through is done with a small example showing the construction
and how to apply the ASTGen1 tool to the AST to create VDM specification classes that
can be used in the modeling process.

The Superstructure defines the notational representation of the concrete meta-classes
and how the various classes are interconnected. Some of the concrete classes do not
have a graphical notation and serve only as “glue”, e.g. the Mos used in SDs which
link Messages to Lifelines. Both graphical and non-graphical constructs are equally
important in order to allow further extensions to the UML AST while maintaining com-
pliance with the UML specification. Some constructs, however, have been omitted from
the AST of two reasons:

1. They did not add value to the UML AST in the context of this thesis, i.e. some
constructs exist to bind together parts of the UML specification,

2. and meta-classes that makes use of multiple inheritance are collapsed into the in-
heriting class, because multiple inheritance is not possible in Java. Concerning the
latter case it relates only to abstract classes in the meta model where the concrete
class is used instead of its abstract super class.

All UML AST constructs have a UML counterpart by the same name, unless stated
otherwise. The UML meta-classes corresponding to types defined in the UML AST can

1Tool to convert VDM-SL type definitions to VDM classes etc. see section 5.1.1.

149

150 APPENDIX E. SPECIFICATION OF THE UML ABSTRACT REPRESENTATION

be found in section E.3. This approach reduces the massive amount of citations that
would otherwise have been present in the following text.

E.1 Class Diagram

E.1.1 Model and ModelElement

The top-level element of the AST is a Model which comprises a name and a set of
ModelElement. UML does not have the notion of a diagram that contains a number of
elements. Rather, a collection of elements constitute a diagram conceptually, hence the
AST Model and ModelElement do not have a counterpart in UML.

The ModelElement shown in Listing E.1 consist of the following:

Class, Association and Constraint, which are described in sections E.1.2, E.1.4
and E.1.5 respectively.

Collaboration: The semantics of Collaboration has changed since UML 1.
However, Collaboration is used here in a UML 1 context, because the primary
UML tool used in this thesis uses it. See section E.2.1 for further explanation.

Model ::

name : String

definitions : set of ModelElement;

ModelElement = Class | Association |

Constraint | Collaboration;

Listing E.1: Model and ModelElement.

E.1.2 Class

The type Class is shown in Listing E.2. It contains a number of types which are de-
scribed in this subsection.

Class ::

name : String

classBody : set of DefinitionBlock

isAbstract : bool
superClass : seq of ClassNameType

visibility : VisibilityKind

isStatic : bool
isActive : bool
templatesignature : [TemplateSignature];

E.1. CLASS DIAGRAM 151

Listing E.2: Class.

DefinitionBlock

The type Class defines classBody as a set of DefinitionBlock, shown in Listing
E.3, which has no UML equivalent and act as a container for the following three types
shown in Listings E.4, E.5 and E.6, respectively:

OwnedOperations: Defines a set of Operation.

• An Operation has a MultiplicityElement that defines the multiplicity
of the return parameter, e.g. two or more to denote a collection as return pa-
rameter. Notice, that the multiplicity of the return parameter of Operation
is actually defined as the attributes lower and upper in the UML speci-
fication. However, MultiplicityElement already define those two at-
tributes, hence the reason they have been replaced by MultiplicityElement
in this thesis work.

• The optional Parameters denote the parameters of the Operation. The
direction of the Parameters are given by the enumeration Parameter-

DirectionKind.

OwnedProperties: Defines a set of Property. A Property represents a declared
state of one or more instances in terms of a named relationship to a value or values,
e.g. a named attribute of a class.

NestedClassifiers: Defines a set of Typewhich enables types e.g. ClassNameType
to be nested inside other classes as a result of this classes can be nested.

DefinitionBlock =

OwnedOperations | OwnedProperties | NestedClassifiers;

Listing E.3: DefinitionBlock.

OwnedOperations ::

operationList :set of Operation;

Operation ::

name : String

visibility : VisibilityKind

multiplicity : MultiplicityElement --aka return type

152 APPENDIX E. SPECIFICATION OF THE UML ABSTRACT REPRESENTATION

isQuery : bool
type : [Type] --aka return type

isStatic : bool;

MultiplicityElement::

isOrdered : bool
isUnique : bool
lower : nat
upper : [nat];

Listing E.4: OwnedOperations, Operation, Parameter, ParameterDirection-
Kind and MultiplicityElement.

OwnedProperties ::

propetityList : set of Property;

Property ::

name : String

visibility : VisibilityKind

multiplicity : [MultiplicityElement]

type : Type

isReadOnly : [bool]
default : [ValueSpecification]

isComposite : bool
isDerived : [bool]
isStatic : [bool]
ownerClass : String

qualifier : [Type];

Listing E.5: OwnedProperties and Property.

NestedClassifiers ::

typeList : set of Type;

Listing E.6: NestedClassifiers.

ClassNameType

See section E.1.3

E.1. CLASS DIAGRAM 153

VisibilityKind

The element Package of the enumeration visibility : VisibilityKind from
Class has been omitted, because the notion of packages do not exist in VDM.

VisibilityKind = <PUBLIC> | <PRIVATE> | <PROTECTED> ;

Listing E.7: VisibilityKind.

TemplateSignature and TemplateParameter

The optional templatesignature : TemplateSignature of Class bundles the
set of TemplateParameter, for the templated class.

TemplateSignature ::

templateParameters : set of TemplateParameter;

TemplateParameter ::

name : String;

Listing E.8: TemplateSignature and TemplateParameter.

E.1.3 Type

Type has one constituent which is not self-explanatory:

superClass : ClassNameType: Defines ClassNameType, which is a construct
introduced in this thesis to ease the way a class is referenced. In the UML super-
structure a class is referenced as an object which means that a class that should be
referenced should be fully constructed with all its members such as properties, op-
erations etc. By introducing ClassNameType this can be avoided because class
names in VDM are considered unique, this means that the use of ClassNameType
does not compromise the UML structure it is just a weakening of the reference.
ClassNameType do not have a UML counterpart.

Type =

BoolType |

IntegerType |

StringType |

UnlimitedNatural |

VoidType |

154 APPENDIX E. SPECIFICATION OF THE UML ABSTRACT REPRESENTATION

CharType |

ClassNameType;

Listing E.9: Type.

ClassNameType ::

name : String;

Listing E.10: ClassNameType.

E.1.4 Association

The Association of ModelElement is shown in Listing E.11. Association de-
fines id:Id which is used to associate an Association with a Constraint (see sec-
tion E.1.5). Notice, that the UML specification states the type of the UML attribute
constrainedElements as Element, hence the UML AST construct Id should be
replaced with a new UML AST construct Element in order to conform to the UML
specification. However, multiple inheritance will then be introduced to the UML AST
because Element is a top-level superclass, hence for now the Id must suffice. Alter-
ations may be made in the future to accommodate for the missing UML AST Element

construct. Listing E.12 shows how Id is defined.

Association ::

ownedEnds : set of Property

ownedNavigableEnds : set of Property

name : [String]

id : Id;

Listing E.11: Association.

String = seq of char;
Id = String

Listing E.12: String and Id.

E.1.5 Constraint and ValueSpecification

The type Constraint, shown in Listing E.13 defines a set of Id, which is the set of el-
ements being constrained by the constraint. The specification of the constraint is defined

E.2. SEQUENCE DIAGRAM 155

by specification : ValueSpecification of Constraint and it contains the
following:

LiteralString: Defines a String value. See Listing E.13.

LiteralInteger: Defines an Integer value. See Listing E.13.

Constraint ::

constraintElements : set of Id

specification : ValueSpecification;

ValueSpecification = LiteralString | LiteralInteger;

Listing E.13: Constraint and ValueSpecification.

LiteralString ::

value : String;

LiteralInteger ::

value : nat;

Listing E.14: LiteralString and LiteralInteger.

E.2 Sequence Diagram

The description so far has covered the abstract syntax of UML Static Structure di-
agram. The last entry in the ModelElement in the beginning if the UML AST is
Collaboration, which represents a UML SD.

E.2.1 Collaboration

As mentioned in section E.1.1, Collaboration is used in this thesis with its UML
1 semantics, hence it represents a UML SD. The notion of a construct unifying a set
of constructs into a coherent whole which could be perceived as a diagram existed in
UML 1 [UML1.4.2, p128], but the idea has been abandoned in UML 2. The unifying
construct for UML 1 SD was Collaboration, which is the reason it is used by various
UML tools (EA, Eclipse UML, see 2.7) and in the UML AST as the entry point for SDs.
Collaboration exist in UML 2 but is no longer used as suggested in the UML AST.

Collaboration, shown in Listing E.15, consist of ownedBehavior : set of

Interaction which in turn has the following:

156 APPENDIX E. SPECIFICATION OF THE UML ABSTRACT REPRESENTATION

lifelines : set of Lifeline: Represents an instance of a class. See section
E.2.2.

fragments : set of InteractionFragment: An interaction fragment is a piece
of an interaction. See section E.2.3.

messages : seq of Message: A Message defines a particular communication
between Lifelines of an Interaction. See section E.2.4.

Collaboration ::

ownedBehavior : set of Interaction;

Interaction ::

name : String

lifeLines : set of LifeLine

fragments : set of InteractionFragment

messages : seq of Message;

Listing E.15: Collaboration, Interaction.

E.2.2 LifeLine

Listing E.16 shows the type LifeLine, which represents an instance of a class via the
optional represents : [Type] (see section E.1.3). If Lifeline do not reference
a class it will be ignored during a transformation.

LifeLine ::

name : String

represents : [Type];

Listing E.16: LifeLine.

E.2.3 InteractionFragment

The type InteractionFragment shown in Listing E.2.3 defines the following:

OccurrenceSpecification: It is the basic semantic unit of Interactions. They
give meaning to an Interaction by the sequence of occurrences (e.g. events)
they specify.

InteractionOperand: It is contained in a CombinedFragment and represents one
operand of the expression given by the enclosing CombinedFragment. See sec-
tion E.2.3

E.2. SEQUENCE DIAGRAM 157

CombinedFragment: It defines a boolean expression by an interaction operator and
operand(s). See section E.2.3

ExecutionSpecification: It is a specification of the execution of a unit of behavior
or action within a Lifeline.

Listing E.17 also shows the definition of Mos and Bes, which are explained in section
E.2.3 and E.2.3, respectively.

InteractionFragment = OccurrenceSpecification |

InteractionOperand |

CombinedFragment |

ExecutionSpecification;

OccurrenceSpecification = Mos;

-- Mos = MessageOccurrenceSpecification

ExecutionSpecification = Bes;

-- Bes = BehaviorExecutionSpecification

Listing E.17: InteractionFragment, Mos and Bes.

InteractionOperand

The InteractionOperand of the InteractionFragment consist of the following:

name : String: The name of the fragment.

fragments : seq of InteractionFragment: The operand represents a part
of an interaction.

guard : [InteractionConstraint]: It is an optional boolean expression that
guards an operand in a CombinedFragment.

operand : seq of InteractionOperand: A sequence of interaction operands
see listing E.21. The operand it the fragment linked to a message.

covered : set of LifeLine: A set of lifelines covered by the fragment.

InteractionOperand ::

name : String

fragments: seq of InteractionFragment

covered : set of Mos

guard : [InteractionConstraint];

158 APPENDIX E. SPECIFICATION OF THE UML ABSTRACT REPRESENTATION

Listing E.18: InteractionOperand.

InteractionConstraint ::

minint : [ValueSpecification]

maxint : [ValueSpecification];

Listing E.19: InteractionConstraint.

CombinedFragment

The CombinedFragment of the InteractionFragment consist of the following:

interactionOperator : InteractionOperatorKind: It is an enumeration
designating the different kinds of operators of CombinedFragments. Only alt

and loop are used in the UML AST.

CombinedFragment ::

name : String

interactionOperator : InteractionOperatorKind

operand : seq of InteractionOperand

covered : set of LifeLine;

Listing E.20: CombinedFragment.

InteractionOperatorKind = <ALT> | <LOOP>;

Listing E.21: InteractionOperatorKind.

Mos and CallEvent

The type Mos is an abbreviation of MessageOccurrenceSpecification. The rea-
son it redefines OccurrenceSpecification in Listing E.17 is because it inherits
OccurrenceSpecification in the UML specification.

Mos specifies the occurrence of event and in effect is the end of a Message, as
shown in Listing E.22. The Mos has the optional event : CallEvent which is a
specification of the reception of a request to invoke a specific operation. The Mos at the
sending end of a Message has its event set to nil.

E.2. SEQUENCE DIAGRAM 159

Mos ::

name : String

message : [Message]

covered : LifeLine

event : [CallEvent];

CallEvent ::

operation : Operation;

Listing E.22: Mos and CallEvent.

Bes

The type Bes is an abbreviation of BehaviorExecutionSpecification. The reason
it redefines ExecutionSpecification in Listing E.17 is because it inherits Exe-

cutionSpecification in the UML specification.
Bes, shown in Listing E.23, represents the execution of a behavior on the same

Lifeline. The notation is the thin rectangular shapes attached to the dotted, vertical
line stemming from the Lifeline. The Bes has the following:

startOs : OccurrenceSpecification: It references the Mos which designates
the start of the behavior.

finishOs : OccurrenceSpecification: It references the Mos which desig-
nates the finish of the behavior.

Bes ::

name : String

startOs : OccurrenceSpecification

finishOs : OccurrenceSpecification

covered : set of LifeLine;

Listing E.23: Bes.

E.2.4 Message

Listing E.24 shows the type Message of the Interaction, which consist of the fol-
lowing:

messageKind : MessageKind: It is an enumerated type that identifies the type
of message. Only complete and unknown have been included. Even though

160 APPENDIX E. SPECIFICATION OF THE UML ABSTRACT REPRESENTATION

unknown does not occur, it is constructed as a union type to be up front with
future development.

messageSort : MessageSort: It is an enumerated type that identifies the type of
communication action that was used to generate the Message. Only syncCall

and asyncCall have been included.

sendEvent : Mos: References the specification of the sending of the Message.

receiveEvent : Mos: References the specification of the reception of the Message.

Message ::

name : String

messageKind : MessageKind

messageSort : MessageSort

sendEvent : Mos

sendReceive : Mos

argument : seq of ValueSpecification;

MessageKind = <COMPLETE> | <UNKNOWN>;

MessageSort = <SYNCHCALL> | <ASYNCHCALL>;

Listing E.24: Message, MessageKind and MessageSort.

E.3 UML Specification Citations

This section contains references to the UML meta-classes mentioned in section E, sorted
alphabetically.

• Association [UMLSuperstructure2.1.2, p55]

• BehaviorExecutionSpecification (Bes) [UMLSuperstructure2.1.2, p483]

• CallEvent [UMLSuperstructure2.1.2, p450]

• Class [UMLSuperstructure2.1.2, p66]

• Collaboration [UML1.4.2, p128] and [UMLSuperstructure2.1.2, p184]

• CombinedFragment [UMLSuperstructure2.1.2, p483]

• Constraint [UMLSuperstructure2.1.2, p74]

• ExecutionSpecification [UMLSuperstructure2.1.2, p494]

• Interaction [UMLSuperstructure2.1.2, 497]

E.3. UML SPECIFICATION CITATIONS 161

• InteractionConstraint [UMLSuperstructure2.1.2, p500]

• InteractionFragment [UMLSuperstructure2.1.2, p501]

• InteractionOperand [UMLSuperstructure2.1.2, p501]

• InteractionOperatorKind [UMLSuperstructure2.1.2, p502]

• Lifeline [UMLSuperstructure2.1.2, p506]

• LiteralInteger [UMLSuperstructure2.1.2, p107]

• LiteralString [UMLSuperstructure2.1.2, p108]

• Message [UMLSuperstructure2.1.2, p507]

• MessageKind [UMLSuperstructure2.1.2, p511]

• MessageSort [UMLSuperstructure2.1.2, p512]

• MultiplicityElement [UMLSuperstructure2.1.2, p110]

• OccurrenceSpecification [UMLSuperstructure2.1.2, p512]

• Operation [UMLSuperstructure2.1.2, p119]

• parameter [UMLSuperstructure2.1.2, p137]

• ParameterDirectionKind [UMLSuperstructure2.1.2, p138]

• Property [UMLSuperstructure2.1.2, p139]

• string [UMLSuperstructure2.1.2, p633]

• TemplateParameter [UMLSuperstructure2.1.2, p643]

• TemplateSignature [UMLSuperstructure2.1.2, p645]

• Type [UMLSuperstructure2.1.2, p151]

• ValueSpecification [UMLSuperstructure2.1.2, p154]

• VisibilityKind [UMLSuperstructure2.1.2, p155]

• MessageOccurrenceSpecification (Mos) [UMLSuperstructure2.1.2, p511]

Appendix F

Model coverage

In this chapter the model coverage is shown as a set of mathematical formatted VDM
classes representing the core features of the transformation which includes Vdm2UML,
Uml2Vdm and other core classes participating in the transformation. The coverage shown
in this chapter is the result of a test suite which including a transformation test for each
rule from chapter 4 and chapter 6. None executed paths are marked as gray and in
the beginning of each section a comment list is shown. In the bottom of each section
a table is provided showing the name, number of calls and coverage for each operation
or function in the listed classes. The coverage of the model is only meant to illustrate
that the transformation have been tested. From the coverage tables it can be seen that
all involved class in a transformation has a coverage in the interval 90 to 99 percentage
except the Oml2VppVisitor because it only implements a sub par of its base class.
It is a fact that bugs exist in VDMTools which makes the coloring of the model e.g.
isofclass colored wrong and there by calculates the coverage false. The complete
model can be found on the attached CD-ROM.

F.1 Transforming from VDM to UML

In this section classes used to transform a VDM model into a UML model are shown.

F.1.1 Transformation from VDM to UML (Vdm2Uml)

The transformation from the OML AST to the UML AST.

init Convert a OmlSpecification to a UML Model.

build uml Create the main UML model from a OML specification.

build Class Convert a OML class to a UML class. This includes the creation of prop-
erties and associations.

163

164 APPENDIX F. MODEL COVERAGE

getGenericTypes Get template signature from OML types. Finds the template param-
eters.

getSuperClasses Get super classes from a OML inheritance class. Returns nil if no
super classes are found.

hasSubclassResponsibilityDefinition Test if a OML Class is abstract in UML. Checks
for a is sub class responsibility operation. True if found.

build def b Proxy operation. Used to explicit set the type before redirecting operation
call. This is introduced because of VDM Java gen limitation of type cast in Java.

build def block (IOmlInstanceVariableDefinitions) Create properties from OML in-
stanca variables.

buildVariable Create a UML property from a OML instance variable definition. If the
instance variable is not mapped to a UML property nil is returned. This is the case
if the property should be represented as an Association.

getDefaultValue If a default value is defined for a instance variable it is returned as a
string else nil.

convertScopeToVisibility Convert OML visibility to UML visibility.

build def block (IOmlValueDefinitions) Create UML properties from a value defini-
tion.

buildValue Create a UML property from a Value definition. If the value is not presented
as a UML property nil is returned. Would be the case if mapped as an Association.

build def block (IOmlTypeDefinitions) Convert OML type definitions to a UML owned
type.

build def block (IOmlOperationDefinitions) Convert OML operations to UML owwned
operations.

buildOperation Convert a OML operation definition to a UML definition. All parame-
ters are ignored - Project time limitation.

build def block (IOmlFunctionDefinitions) Convert OML functions to UML owhed
operations.

buildFunction Convert a OML functions definition to a UML definition. All parame-
ters are ignored - Project time limitation.

isSimpleType Check if a OML type is mapped to a UML simple type.

GetSimpleTypeName Get a simple type name.

F.1. TRANSFORMING FROM VDM TO UML 165

CreateAssociationFromProperty Create an Association from a UML property and a
OML type. The association is store in instance variable in the class.

CreateAssociationFromPropertyGeneral Create a UML association from a UML prop-
erty where the OML type contains a OML type name.

CreateAssociationFromPropertyProductType Create a UML association from a UML
property where the OML type is a product type.

CreateAssociationFromPropertyUnionType Create a UML association from a UML
property where the OML type is a union type.

CreateEndProperty Create Association ends from a OML type. Ends constructed
from Product and Union type and the anonymus end at the property owner end
of a assocation.

GetNextId Get a new Id.

class Vdm2Uml
types

public String = char∗

instance variables
associations : IUmlAssociation-set := {};
constraints : IUmlConstraint -set := {};
runningId : N := 0;

operations
public

init : IOmlSpecifications o→ IUmlModel
init (specs) 4

(let model = build -uml (specs) in
(model .setDefinitions

(model .getDefinitions () ∪
associations ∪
constraints) ;

return model
)

);
public

build -uml : IOmlSpecifications o→ UmlModel
build -uml (specs) 4

let classes = specs.getClassList (),
uml -classes = [build -Class (classes (i)) |

i ∈ inds classes] in
return new UmlModel ("Root", elems uml -classes);

166 APPENDIX F. MODEL COVERAGE

public
build -Class : IOmlClass o→ IUmlClass
build -Class (c) 4

let name = c.getIdentifier (),
inh : [IOmlInheritanceClause] = if c.hasInheritanceClause ()

then c.getInheritanceClause ()
else nil ,

body = c.getClassBody (),
isStatic = false,
isActive =

card {body (i) |
i ∈ inds body ·

isofclass (IOmlThreadDefinition, body (i))} >

0,
dBlock = [let dbs : IOmlDefinitionBlock =

body (i) in
build -def -b (dbs, name) |

i ∈ inds body],
dBlockSet = {d | d ∈ elems dBlock · d 6= nil },
isAbstract = hasSubclassResponsibilityDefinition (body),
supers = getSuperClasses (inh),
visibility =

new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPUBLIC),
templateParameters = getGenericTypes (c.getGenericTypes ()) in

return new UmlClass (name,

dBlockSet ,
isAbstract ,
supers,

visibility ,

isStatic,

isActive,

templateParameters);
public

F.1. TRANSFORMING FROM VDM TO UML 167

getGenericTypes : IOmlType∗ o→ [IUmlTemplateSignature]
getGenericTypes (genericTypes) 4

if len genericTypes > 0
then return new UmlTemplateSignature

(
{let tn : IOmlTypeName = t in
new UmlTemplateParameter (tn.getName ().getIdentifier ()) |

t ∈ elems genericTypes})
else return nil ;

public
getSuperClasses : [IOmlInheritanceClause] o→ IUmlClassNameType∗

getSuperClasses (inh) 4

if inh = nil
then return []
else let list = inh.getIdentifierList () in

return [new UmlClassNameType (list (i)) | i ∈ inds list] ;
public

hasSubclassResponsibilityDefinition : IOmlDefinitionBlock∗ o→ B
hasSubclassResponsibilityDefinition (dBlock) 4

let opList = conc [let op : IOmlOperationDefinitions = dBlock (i) in
op.getOperationList () |

i ∈ inds dBlock ·isofclass (IOmlOperationDefinitions, dBlock (i))],
hasIsSubClassResp =

{let explicitOp : IOmlExplicitOperation = opList (i).getShape () in
explicitOp.getBody ().getSubclassResponsibility () |

i ∈ inds opList ·isofclass (IOmlExplicitOperation, opList (i).getShape ())} in
return ∃ e ∈ hasIsSubClassResp · e = true;

private
build -def -b : IOmlDefinitionBlock × String o→ [IUmlDefinitionBlock]
build -def -b (block , owner) 4

cases (true):
(isofclass (IOmlInstanceVariableDefinitions, block))→

let tmp : IOmlInstanceVariableDefinitions = block in
build -def -block(tmp, owner) ,

(isofclass (IOmlValueDefinitions, block))→
let tmp : IOmlValueDefinitions = block in
build -def -block(tmp, owner) ,

(isofclass (IOmlTypeDefinitions, block))→
let tmp : IOmlTypeDefinitions = block in
build -def -block(tmp, owner) ,

168 APPENDIX F. MODEL COVERAGE

(isofclass (IOmlOperationDefinitions, block))→
let tmp : IOmlOperationDefinitions = block in
build -def -block(tmp, owner) ,

(isofclass (IOmlFunctionDefinitions, block))→
let tmp : IOmlFunctionDefinitions = block in
build -def -block(tmp, owner) ,

others→ return nil
end;

public
build -def -block : IOmlInstanceVariableDefinitions × String o→

IUmlOwnedProperties
build -def -block (v , owner) 4

let q = v .getVariablesList (),
props = [buildVariable (q (i), owner) |

i ∈ inds q ·
isofclass (IOmlInstanceVariable, q (i))] in

return new UmlOwnedProperties ({p | p ∈ elems props ·
p 6= nil });

public
buildVariable : IOmlInstanceVariable × String o→ [IUmlProperty]
buildVariable (var , owner) 4

let access = var .getAccess (),
scope = access.getScope (),
assign = var .getAssignmentDefinition (),
isStatic = access.getStaticAccess (),
name = assign.getIdentifier (),
visibility = convertScopeToVisibility (scope),
omlType = assign.getType (),
multiplicity = Vdm2UmlType‘extractMultiplicity (omlType),
type = Vdm2UmlType‘convertPropertyType (omlType, owner),
isReadOnly = false,
default : [String] = if assign.hasExpression ()

then getDefaultValue (assign.getExpression ())
else nil ,

isComposite = false,
isDerived = false,

F.1. TRANSFORMING FROM VDM TO UML 169

qualifier : [IUmlType] = Vdm2UmlType‘getQualifier (omlType) in
(dcl property : IUmlProperty := new UmlProperty (name,

visibility ,

multiplicity ,

type,

isReadOnly ,

default ,
isComposite,

isDerived ,

isStatic,

owner ,

qualifier);
if ¬ isSimpleType (omlType)
then (CreateAssociationFromProperty(property , omlType) ;

return nil
)

else return property
);

public
getDefaultValue : IOmlExpression o→ [String]
getDefaultValue (expression) 4

cases true:
(isofclass (IOmlSymbolicLiteralExpression, expression))→

(let se : IOmlSymbolicLiteralExpression = expression in
cases true:

(isofclass (IOmlTextLiteral , se.getLiteral ()))→
(let tx : IOmlTextLiteral = se.getLiteral () in

return tx .getVal ()
),

(isofclass (IOmlNumericLiteral , se.getLiteral ()))→
(let tx : IOmlNumericLiteral = se.getLiteral () in

return StdLib‘ToString [N] (tx .getVal ())
),

others→ return nil
end

),
others→ return nil

end
functions
public

170 APPENDIX F. MODEL COVERAGE

convertScopeToVisibility : IOmlScope → IUmlVisibilityKind
convertScopeToVisibility (sc) 4

let val : N = sc.getValue () in
cases val :

(OmlScopeQuotes‘IQPUBLIC)→
new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPUBLIC),

(OmlScopeQuotes‘IQPRIVATE),
(OmlScopeQuotes‘IQDEFAULT)→

new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPRIVATE),
(OmlScopeQuotes‘IQPROTECTED)→

new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPROTECTED)
end

operations
public

build -def -block : IOmlValueDefinitions×String o→ IUmlOwnedProperties
build -def -block (v , owner) 4

let q = v .getValueList (),
props = [buildValue (q (i), owner) |

i ∈ inds q],
propsNoNil = {p | p ∈ elems props ·

p 6= nil } in
return new UmlOwnedProperties ((propsNoNil));

public
buildValue : IOmlValueDefinition × String o→ [IUmlProperty]
buildValue (var , owner) 4

let access = var .getAccess (),
scope = access.getScope (),
shape = var .getShape (),
isStatic = access.getStaticAccess (),
patternIdent : IOmlPatternIdentifier = shape.getPattern (),
name = patternIdent .getIdentifier (),
visibility = convertScopeToVisibility (scope),
multiplicity = Vdm2UmlType‘extractMultiplicity (shape.getType ()),
type = Vdm2UmlType‘convertType (shape.getType ()),
isReadOnly = true,
default = getDefaultValue (shape.getExpression ()),
isComposite = false,
isDerived = false,
qualifier : [IUmlType] = Vdm2UmlType‘getQualifier (shape.getType ()),

F.1. TRANSFORMING FROM VDM TO UML 171

omlType = shape.getType () in
(dcl property : IUmlProperty := new UmlProperty (name,

visibility ,

multiplicity ,

type,

isReadOnly ,

default ,
isComposite,

isDerived ,

isStatic,

owner ,

qualifier);
if ¬ isSimpleType (omlType)
then (CreateAssociationFromProperty(property , omlType) ;

return nil
)

else return property
);

public
build -def -block : IOmlTypeDefinitions×String o→ IUmlNestedClassifiers
build -def -block (td , -) 4

let q = td .getTypeList (),
tps = [buildType (q (i).getShape ()) |

i ∈ inds q ·
isofclass (IOmlSimpleType, q (i).getShape ())] in

return new UmlNestedClassifiers (elems tps);
public

buildType : IOmlSimpleType o→ IUmlType
buildType (var) 4

return Vdm2UmlType‘convertType (var .getType ());
public

build -def -block : IOmlOperationDefinitions×String o→ IUmlOwnedOperations
build -def -block (opDef , owner) 4

let ops : IOmlOperationDefinition∗ = opDef .getOperationList () in
return new UmlOwnedOperations ({buildOperation (ops (i), owner) |

i ∈ inds ops});
public

buildOperation : IOmlOperationDefinition × String o→ IUmlOperation
buildOperation (op, -) 4

let access = op.getAccess (),

172 APPENDIX F. MODEL COVERAGE

scope = access.getScope (),
shape : IOmlExplicitOperation = op.getShape (),
isStatic = access.getStaticAccess (),
name = shape.getIdentifier (),
visibility = convertScopeToVisibility (scope),
multiplicity = new UmlMultiplicityElement (false, false, 1, 1),
type = Vdm2UmlType‘convertType (shape.getType ()) in

return new UmlOperation (name,

visibility ,

multiplicity ,

false,

type,

isStatic,

nil);
public

build -def -block : IOmlFunctionDefinitions×String o→ IUmlOwnedOperations
build -def -block (opDef , owner) 4

let ops : IOmlFunctionDefinition∗ = opDef .getFunctionList () in
return new UmlOwnedOperations ({buildFunction (ops (i), owner) |

i ∈ inds ops});
public

buildFunction : IOmlFunctionDefinition × String o→ IUmlOperation
buildFunction (op, -) 4

let access = op.getAccess (),
scope = access.getScope (),
shape : IOmlExplicitFunction = op.getShape (),
isStatic = access.getStaticAccess (),
name = shape.getIdentifier (),
visibility = convertScopeToVisibility (scope),
multiplicity = new UmlMultiplicityElement (false, false, 1, 1),
type = Vdm2UmlType‘convertType (shape.getType ()) in

return new UmlOperation (name,

visibility ,

multiplicity ,

true,

type,

isStatic,

nil)
functions
public

F.1. TRANSFORMING FROM VDM TO UML 173

isSimpleType : IOmlType → B
isSimpleType (t) 4

cases true :
(isofclass (IOmlInjectiveMapType, t)),
(isofclass (IOmlGeneralMapType, t)),
(isofclass (IOmlTypeName, t)),
(isofclass (IOmlProductType, t)),
(isofclass (IOmlUnionType, t))→ false,

(isofclass (IOmlSetType, t))→
let t1 : IOmlSetType = t in
isSimpleType (t1.getType ()),

(isofclass (IOmlSeq0Type, t))→
let t1 : IOmlSeq0Type = t in
isSimpleType (t1.getType ()),

(isofclass (IOmlSeq1Type, t))→
let t1 : IOmlSeq1Type = t in
isSimpleType (t1.getType ()),

(isofclass (IOmlOptionalType, t))→
let t1 : IOmlOptionalType = t in
isSimpleType (t1.getType ()),

others→ true
end;

private
GetSimpleTypeName : IUmlType → String
GetSimpleTypeName (t) 4

cases true :
(isofclass (IUmlBoolType, t))→ ("bool"),
(isofclass (IUmlIntegerType, t))→ ("int"),
(isofclass (IUmlCharType, t))→ ("char"),
others→ ("String")

end
operations
public

CreateAssociationFromProperty : IUmlProperty × IOmlType o→ ()
CreateAssociationFromProperty (property , omlType) 4

cases true:
(isofclass (IOmlProductType, omlType))→

CreateAssociationFromPropertyProductType(property , omlType),
(isofclass (IOmlUnionType, omlType))→

CreateAssociationFromPropertyUnionType(property , omlType),

174 APPENDIX F. MODEL COVERAGE

others→ CreateAssociationFromPropertyGeneral(property , omlType)
end;

public
CreateAssociationFromPropertyGeneral : IUmlProperty×IOmlType o→

()
CreateAssociationFromPropertyGeneral (property , -) 4

let ownerClassName = if isofclass (IUmlClassNameType, property .getType ())
then let pcn : IUmlClassNameType = property .getType () in

pcn.getName ()
else GetSimpleTypeName (property .getType ()),

propOtherEnd = {new UmlProperty ("",

new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPRIVATE),
nil ,
new UmlClassNameType (property .getOwnerClass ()),
nil ,
nil ,
false,

nil ,
nil ,
ownerClassName,

nil)} in
associations := associations ∪

{new UmlAssociation (propOtherEnd , {property}, nil , GetNextId ())};
public

CreateAssociationFromPropertyProductType : IUmlProperty×IOmlType o→
()

CreateAssociationFromPropertyProductType (property , omlType) 4

let name : String = property .getName (),
prop : UmlProperty = property ,
props : IUmlProperty-set =

⋃
{CreateEndProperty (p, name) |

p ∈ {omlType} ·
isofclass (IOmlProductType, p)} in

(prop.setName("") ;
if card props > 1
then associations := associations ∪

{new UmlAssociation (props, {prop}, nil , GetNextId ())}
);

public

F.1. TRANSFORMING FROM VDM TO UML 175

CreateAssociationFromPropertyUnionType : IUmlProperty×IOmlType o→
()

CreateAssociationFromPropertyUnionType (property , omlType) 4

let name : String = property .getName (),
prop : UmlProperty = property ,
props : IUmlProperty-set =

⋃
{CreateEndProperty (p, name) |

p ∈ {omlType} ·
isofclass (IOmlUnionType, p)} in

(prop.setName("") ;
if card props > 1
then (dcl assoc : IUmlAssociation-set := {new UmlAssociation ({p}, {prop}, nil , GetNextId ()) |

p ∈ props};
associations := associations ∪ assoc;
constraints := constraints ∪

{new UmlConstraint ({a.getId () | a ∈
assoc}, new UmlLiteralString ("xor"))}

)
);

public
CreateEndProperty : IOmlType × String o→ IUmlProperty-set
CreateEndProperty (t , name) 4

(if (isofclass (IOmlProductType, t))
then (let typedType : IOmlProductType = t in

return CreateEndProperty (typedType.getLhsType (), name)∪

CreateEndProperty (typedType.getRhsType (), name)
)

else if (isofclass (IOmlUnionType, t))
then (let typedType : IOmlUnionType = t in

return CreateEndProperty (typedType.getLhsType (), name)∪

CreateEndProperty (typedType.getRhsType (), name)
)

176 APPENDIX F. MODEL COVERAGE

else return {new UmlProperty (name,

new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPRIVATE),
Vdm2UmlType‘extractMultiplicity (t),
Vdm2UmlType‘convertType (t),
nil ,
nil ,
false,

nil ,
nil ,
"Implementation prosponed",

Vdm2UmlType‘getQualifier (t))}
);

private
GetNextId : () o→ String
GetNextId () 4

(runningId := runningId + 1;
return Util ‘ToString [N] (runningId)

)
end Vdm2Uml

Test Suite : vdm.tc
Class : Vdm2Uml

Name #Calls Coverage

Vdm2Uml‘init 31
√

Vdm2Uml‘GetNextId 26
√

Vdm2Uml‘buildType 36
√

Vdm2Uml‘build-uml 31
√

Vdm2Uml‘buildValue 3 90%
Vdm2Uml‘build-Class 62

√

Vdm2Uml‘build-def-b 35
√

Vdm2Uml‘isSimpleType 71 86%
Vdm2Uml‘buildFunction 2

√

Vdm2Uml‘buildVariable 53
√

Vdm2Uml‘buildOperation 4
√

Vdm2Uml‘getDefaultValue 18 95%
Vdm2Uml‘getGenericTypes 62

√

Vdm2Uml‘getSuperClasses 62
√

Vdm2Uml‘CreateEndProperty 30
√

Vdm2Uml‘GetSimpleTypeName 2 62%
Vdm2Uml‘convertScopeToVisibility 62

√

Vdm2Uml‘CreateAssociationFromProperty 20
√

F.1. TRANSFORMING FROM VDM TO UML 177

Name #Calls Coverage

Vdm2Uml‘hasSubclassResponsibilityDefinition 62
√

Vdm2Uml‘CreateAssociationFromPropertyGeneral 14
√

Vdm2Uml‘CreateAssociationFromPropertyUnionType 3
√

Vdm2Uml‘CreateAssociationFromPropertyProductType 3
√

Vdm2Uml‘build-def-block 9
√

Vdm2Uml‘build-def-block 3
√

Vdm2Uml‘build-def-block 2
√

Vdm2Uml‘build-def-block 4
√

Vdm2Uml‘build-def-block 15
√

Total Coverage 97%

178 APPENDIX F. MODEL COVERAGE

F.1.2 VDM to UML type converter (Vdm2UmlType)

Class providing type conversion.

extractMultiplicity Extract multiplicity from type.

getQualifier Get qualifier from type.

convertType Convert a OML type to UML.

convertPropertyType Convert property.

class Vdm2UmlType
types

public String = char∗

operations
public static

extractMultiplicity : IOmlType o→ IUmlMultiplicityElement
extractMultiplicity (t) 4

(dcl isOrdered : B := false,
isUnique : B := true,
lower : N := 1,
upper : [N] := 1;

cases true:
(isofclass (IOmlSetType, t))→

(upper := nil ;
lower := 0;
isOrdered := false

),
(isofclass (IOmlSeq0Type, t))→

(lower := 0;
upper := nil ;
isOrdered := true;
isUnique := false

),
(isofclass (IOmlSeq1Type, t))→

(lower := 1;
upper := nil ;
isOrdered := true;
isUnique := false

),

F.1. TRANSFORMING FROM VDM TO UML 179

(isofclass (IOmlGeneralMapType, t)),
(isofclass (IOmlInjectiveMapType, t))→

(isOrdered := true;
upper := nil ;
lower := 0;
isUnique := false

),
(isofclass (IOmlOptionalType, t))→

(upper := 1;
lower := 0

)
end ;
return new UmlMultiplicityElement (isOrdered , isUnique, lower , upper)

)
functions
public static

getQualifier : IOmlType → [IUmlType]
getQualifier (t) 4

cases true :
(isofclass (IOmlInjectiveMapType, t))→ let t1 : IOmlInjectiveMapType = t in

convertType (t1.getDomType ()),
(isofclass (IOmlGeneralMapType, t))→ let t1 : IOmlGeneralMapType = t in

convertType (t1.getDomType ()),
others→ nil

end;
public static

180 APPENDIX F. MODEL COVERAGE

convertType : IOmlType → [IUmlType]
convertType (t) 4

cases true :
(isofclass (IOmlBoolType, t))→ new UmlBoolType (),
(isofclass (IOmlNat1Type, t))→ new UmlIntegerType (),
(isofclass (IOmlNatType, t))→ new UmlIntegerType (),
(isofclass (IOmlIntType, t))→ new UmlIntegerType (),
(isofclass (IOmlRealType, t))→ new UmlUnlimitedNatural (),
(isofclass (IOmlCharType, t))→ new UmlCharType (),
(isofclass (IOmlTokenType, t))→ new UmlIntegerType (),
(isofclass (IOmlSetType, t))→ let t1 : IOmlSetType = t in

convertType (t1.getType ()),
(isofclass (IOmlSeq0Type, t))→ let t1 : IOmlSeq0Type = t in

convertType (t1.getType ()),
(isofclass (IOmlSeq1Type, t))→ let t1 : IOmlSeq1Type = t in

convertType (t1.getType ()),
(isofclass (IOmlInjectiveMapType, t))→ let t1 : IOmlInjectiveMapType = t in

convertType (t1.getRngType ()),
(isofclass (IOmlGeneralMapType, t))→ let t1 : IOmlGeneralMapType = t in

convertType (t1.getRngType ()),
(isofclass (IOmlEmptyType, t))→ nil ,
(isofclass (IOmlOptionalType, t))→ let t1 : IOmlOptionalType = t in

convertType (t1.getType ()),
(isofclass (IOmlTypeName, t))→ let a : IOmlTypeName = t in

new UmlClassNameType (a.getName ().getIdentifier ()),
others→ nil

end;
public static

convertPropertyType : IOmlType × String → IUmlType
convertPropertyType (t , owner) 4

let ty = convertType (t) in
if ty = nil
then new UmlClassNameType (owner)
else ty

end Vdm2UmlType
Test Suite : vdm.tc
Class : Vdm2UmlType

Name #Calls Coverage

Vdm2UmlType‘convertType 167 87%
Vdm2UmlType‘getQualifier 74

√

F.1. TRANSFORMING FROM VDM TO UML 181

Name #Calls Coverage

Vdm2UmlType‘convertPropertyType 53
√

Vdm2UmlType‘extractMultiplicity 74 91%

Total Coverage 90%

182 APPENDIX F. MODEL COVERAGE

F.1.3 Serilize the UML AST to XMI with EA support (Uml2XmiEAxml)

Serialize the UML AST into a abstract XMI model.

Save Save UML model to file.

CreateXmlFile Create and construct XML model.

AddDefinitions Add definitions to XML model.

AddConstraint Add constraint to XML doc.

AddExstention Add EA extentions to XML doc. Association navigation symbol. Con-
traints. Qualified Association. Template parameters.

GenerateClassIds Create map of class names to class id in model.

AddClass Add class to XML model.

AddPropeties Add properties to XML model.

AddOperstions Add operations to XML model.

AddAssociation Add association to XML model.

AddAssociationMp Add multiplicity element to XML model.

AddGeneralization Add generalization to XML model.

AddTemplates Add template signature to XML model.

GetUmlPrimitiveTypeId Get id of UML primitive type used in XML model.

AddStdTypes Add primitive types to XML model.

AddPrimitiveType Add primitive type to XML model returns the id of the type added.

GetTypeId Get id in XML model of a UML type.

GetNextId Get next id for use in XML model.

GetId Construct if from a int.

GetVisibilityKind Get visibility name form visibility type. The name to use in the
XML model.

class Uml2XmiEAxml is subclass of Uml2Xmi
types
public

F.1. TRANSFORMING FROM VDM TO UML 183

QualifierInfo : : AssociationId : String
ClassId : String
QualifierName : String ;

public
QualifierEnd : : Property : IUmlProperty

IsNavigable : B
values

ID-TAG : String = "xmi : id";
ownedMemberElementName : String = "ownedMember"

instance variables
protected id : Z := 1;
protected packageId : Z := 0;
protected classes : String m→ String := {7→};
protected primitiveTypes : String m←→ String := {7→};
protected associationIdMap : String m→ String := {7→};
protected oe : String := "";
protected extensionTemplateClasses : String-set := {};
protected extensionConstrainElem : String-set := {};
protected extensionConectorNonNavigable : String-set := {};
protected extensionConectorQualifier : QualifierInfo-set := {};

operations
public

Save : char+ × IUmlModel o→ ()
Save (fileName, model) 4

(dcl xmlVisitor : XmlFileOutputVisitor := new XmlFileOutputVisitor ();
CreateXmlFile(model) ;
Util ‘Clear() ;
xmlVisitor .setEncoding("UTF -8") ;
xmlVisitor .VisitXmlDocument(doc) ;
Util ‘SaveBuf (fileName)

);
protected

184 APPENDIX F. MODEL COVERAGE

CreateXmlFile : IUmlModel o→ ()
CreateXmlFile (m) 4

(oe := ownedMemberElementName;
doc.StartE ("xmi : XMI") ;
doc.StartA("xmi : version","2.1") ;
doc.StartA("xmlns:uml","http://schema.omg .org/spec/UML/2.0");
doc.StartA("xmlns:xmi","http://schema.omg .org/spec/XMI /2.1");
doc.StartE ("xmi : Documentation") ;
doc.StartA("xmi : Exporter","Enterprise Architect") ;
doc.StartA("xmi : ExporterVersion","6.5") ;
doc.StopE ("xmi : Documentation") ;
doc.StartE ("uml : Model") ;
doc.StartA("name", m.getName ()) ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartE (oe) ;
doc.StartA("xmi : type","uml : Package") ;
doc.StartA(ID-TAG , GetId (packageId)) ;
doc.StartA("name","VDM Generated model") ;
AddStdTypes() ;
GenerateClassIds(m.getDefinitions ()) ;
AddDefinitions({d | d ∈ m.getDefinitions ()·(isofclass (), IUmlClass)d});
AddDefinitions({d | d ∈ m.getDefinitions ()·(isofclass (), IUmlAssociation)d});
AddDefinitions({d | d ∈ m.getDefinitions ()·(isofclass (), IUmlConstraint)d});
doc.StopE (oe) ;
doc.StopE ("uml : Model") ;
AddExstention() ;
doc.StopE ("xmi : XMI")

);
private

AddDefinitions : IUmlModelElement -set
o→ ()

AddDefinitions (defs) 4

for all c ∈ {d | d ∈ defs}
do (cases true:

(isofclass (IUmlConstraint , c))→ AddConstraint(c) ,
(isofclass (IUmlAssociation, c))→ AddAssociation(c) ,
(isofclass (IUmlClass, c))→ AddClass(c)

end
) ;

private

F.1. TRANSFORMING FROM VDM TO UML 185

AddConstraint : IUmlConstraint o→ ()
AddConstraint (c) 4

(doc.StartE (oe) ;
doc.StartA("xmi : type","uml : Constraint") ;
let constrainId = GetNextId () in
(extensionConstrainElem := extensionConstrainElem∪{constrainId};

doc.StartA(ID-TAG , constrainId)
) ;
for all a ∈ c.getConstraintElements ()
do (doc.StartE ("constrainedElement") ;

doc.StartA("xmi : idref ", associationIdMap (a)) ;
doc.StopE ("constrainedElement")

) ;
doc.StartE ("specification") ;
doc.StartA("xmi : type","uml : OpaqueExpression") ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StopE ("specification") ;
doc.StartE ("body") ;
doc.StartD(if isofclass (IUmlLiteralString , c.getSpecification ())

then let spec : IUmlLiteralString = c.getSpecification () in
spec.getValue ()

else "") ;
doc.StopE ("body") ;
doc.StopE ("specification") ;
doc.StopE (oe)

);
private

AddExstention : () o→ ()
AddExstention () 4

(doc.StartE ("xmi : Extension") ;
doc.StartA("extender","Enterprise Architect") ;
doc.StartA("extenderID","6.5") ;
doc.StartE ("elements") ;
for all c ∈ extensionTemplateClasses

186 APPENDIX F. MODEL COVERAGE

do (doc.StartE ("element") ;
doc.StartA("xmi : idref ", classes (c)) ;
doc.StartA("xmi : type","uml : Class") ;
doc.StartA("name", c) ;
doc.StartA("scope","public") ;
doc.StartE ("properties") ;
doc.StartA("sType","Class") ;
doc.StartA("nType","1") ;
doc.StopE ("properties") ;
doc.StopE ("element")

) ;
for all constrainId ∈ extensionConstrainElem
do (doc.StartE ("element") ;

doc.StartA("xmi : idref ", constrainId) ;
doc.StartA("xmi : type","uml : Constraint") ;
doc.StartA("scope","public") ;
doc.StartE ("properties") ;
doc.StartA("documentation","xor") ;
doc.StartA("isSpecification","false") ;
doc.StartA("sType","Constraint") ;
doc.StartA("nType","2") ;
doc.StartA("scope","public") ;
doc.StopE ("properties") ;
doc.StopE ("element")

) ;
doc.StopE ("elements") ;
doc.StartE ("diagrams") ;
for all constrainId ∈ extensionConstrainElem

F.1. TRANSFORMING FROM VDM TO UML 187

do (doc.StartE ("diagram") ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartE ("model") ;
doc.StartA("package", GetId (packageId)) ;
doc.StartA("localID","24") ;
doc.StartA("owner", GetId (packageId)) ;
doc.StopE ("model") ;
doc.StartE ("properties") ;
doc.StartA("name","Constrain diagram "yconstrainId);
doc.StartA("type","Logical") ;
doc.StopE ("properties") ;
doc.StartE ("elements") ;
doc.StartE ("element") ;
doc.StartA("geometry","Left = 100; Top = 100; Right =

100; Bottom = 100;") ;
doc.StartA("subject", constrainId) ;
doc.StartA("seqno","1") ;
doc.StartA("style","DUID = AE8AC20D ;") ;
doc.StopE ("element") ;
doc.StopE ("elements") ;
doc.StopE ("diagram")

) ;
doc.StopE ("diagrams") ;
doc.StartE ("connectors") ;
for all associationEndId ∈ extensionConectorNonNavigable
do (doc.StartE ("connector") ;

doc.StartA("xmi : idref ", associationEndId) ;
doc.StartE ("properties") ;
doc.StartA("ea type","Association") ;
doc.StartA("direction","Unspecified") ;
doc.StopE ("properties") ;
doc.StopE ("connector")

) ;
for all qualifier ∈ extensionConectorQualifier

188 APPENDIX F. MODEL COVERAGE

do (doc.StartE ("connector") ;
doc.StartA("xmi : idref ", qualifier .AssociationId) ;
doc.StartE ("target") ;
doc.StartA("xmi : idref ", qualifier .ClassId) ;
doc.StartE ("constraints") ;
doc.StartA("qualifier", qualifier .QualifierName) ;
doc.StopE ("constraints") ;
doc.StopE ("target") ;
doc.StopE ("connector")

) ;
doc.StopE ("connectors") ;
doc.StopE ("xmi : Extension")

);
protected

GenerateClassIds : IUmlModelElement -set
o→ ()

GenerateClassIds (defs) 4

(for all c ∈ {d | d ∈ defs}
do (cases true:

(isofclass (IUmlClass, c))→
(let cl : IUmlClass = c in

classes := classes†{cl .getName () 7→ GetNextId ()}
)

end
)

);
protected

F.1. TRANSFORMING FROM VDM TO UML 189

AddClass : IUmlClass o→ ()
AddClass (cl) 4

(doc.StartE (oe) ;
doc.StartA("isAbstract", Util ‘ToStringBool (cl .getIsAbstract ()));
doc.StartA("isActive", Util ‘ToStringBool (cl .getIsActive ()));
doc.StartA("isLeaf ","false") ;
doc.StartA("name", cl .getName ()) ;
doc.StartA("visibility","public") ;
doc.StartA(ID-TAG , classes (cl .getName ())) ;
doc.StartA("xmi : type","uml : Class") ;
AddPropeties(

⋃
{let d : IUmlOwnedProperties = df in

d .getPropetityList () |
df ∈ cl .getClassBody ()·isofclass (IUmlOwnedProperties, df)});

AddOperstions(
⋃
{let d : IUmlOwnedOperations = df in

d .getOperationList () |
df ∈ cl .getClassBody ()·isofclass (IUmlOwnedOperations, df)});

if len cl .getSuperClass () > 0
then AddGeneralization(cl .getSuperClass ()) ;
if cl .hasTemplatesignature ()
then (AddTemplates(cl .getTemplatesignature ()) ;

extensionTemplateClasses := extensionTemplateClasses∪

{cl .getName ()}
) ;

doc.StopE (oe)
);

protected
AddPropeties : IUmlProperty-set

o→ ()
AddPropeties (propeties) 4

(for all prop ∈ propeties

190 APPENDIX F. MODEL COVERAGE

do (doc.StartE ("ownedAttribute") ;
doc.StartA("name", prop.getName ()) ;
doc.StartA("ownerScope","instance") ;
if prop.hasIsReadOnly ()
then doc.StartA("isReadOnly", StdLib‘ToStringBool (prop.getIsReadOnly ()));
if prop.hasIsStatic ()
then doc.StartA("isStatic", Util ‘ToStringBool (prop.getIsStatic ()));
doc.StartA("visibility", GetVisibilityKind (prop.getVisibility ()));
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("xmi : type","uml : Property") ;
if prop.hasMultiplicity ()
then (doc.StartA("isOrdered", Util ‘ToStringBool (prop.getMultiplicity ().getIsOrdered ()));

AddAssociationMp(prop.getMultiplicity ())
) ;

if prop.hasDefault ()
then (doc.StartE ("defaultValue") ;

doc.StartA("xmi :type","uml :LiteralString");
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("value", prop.getDefault ()) ;
doc.StopE ("defaultValue")

) ;
doc.StartE ("type") ;
doc.StartA("xmi :idref ", GetUmlPrimitiveTypeId (prop.getType ()));
doc.StopE ("type") ;
doc.StopE ("ownedAttribute")

)
);

protected
AddOperstions : IUmlOperation-set

o→ ()
AddOperstions (ops) 4

(for all op ∈ ops

F.1. TRANSFORMING FROM VDM TO UML 191

do (doc.StartE ("ownedOperation") ;
doc.StartA("isAbstract","false") ;
doc.StartA("isLeaf ","false") ;
doc.StartA("isQuery","false") ;
doc.StartA("name", op.getName ()) ;
doc.StartA("ownerScope","instance") ;
doc.StartA("visibility", GetVisibilityKind (op.getVisibility ()));
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("xmi : type","uml : Operation") ;
doc.StopE ("ownedOperation")

)
);

protected
AddAssociation : IUmlAssociation o→ ()
AddAssociation (association) 4

(doc.StartE (oe) ;
doc.StartA("isAbstract","false") ;
doc.StartA("isDerived","false") ;
doc.StartA("isLeaf ","false") ;
doc.StartA("name","") ;
let associationId = GetNextId () in
(doc.StartA(ID-TAG , associationId) ;

associationIdMap := associationIdMap†{association.getId () 7→
associationId};

doc.StartA("xmi : type","uml : Association") ;
let unNamedProps : QualifierEnd∗ =

Util ‘SetToSeq [QualifierEnd]
(
{mk-QualifierEnd (p, false) | p ∈ association.getOwnedEnds ()·

len p.getName () = 0} ∪
{mk-QualifierEnd (p, true) | p ∈

association.getOwnedNavigableEnds ()·
len p.getName () = 0}),

192 APPENDIX F. MODEL COVERAGE

namedProps =
Util ‘SetToSeq [QualifierEnd]

(
{mk-QualifierEnd (p, false) | p ∈ association.getOwnedEnds ()·

len p.getName () > 0} ∪
{mk-QualifierEnd (p, true) | p ∈ association.getOwnedNavigableEnds ()·

len p.getName () > 0}),
props = (unNamedProps y namedProps) in

for all i ∈ inds props
do let prop = props (i) in

(if prop.Property .hasQualifier ()
then (extensionConectorQualifier := extensionConectorQualifier∪

{mk-QualifierInfo (associationId ,

GetTypeId (new UmlClassNameType (prop.Property .getOwnerClass ())),
(primitiveTypes -1) (GetUmlPrimitiveTypeId (prop.Property .getQualifier ())))}

) ;
doc.StartE ("ownedEnd") ;
doc.StartA("aggregation","none") ;
doc.StartA("association", associationId) ;
doc.StartA("isNavigable", Util ‘ToStringBool (prop.IsNavigable));
if len (prop.Property .getName ()) > 0
then doc.StartA("name", prop.Property .getName ())

F.1. TRANSFORMING FROM VDM TO UML 193

else doc.StartA("name","") ;
doc.StartA("visibility", GetVisibilityKind (prop.Property .getVisibility ()));
let associationEndId = GetNextId () in
(doc.StartA(ID-TAG , associationEndId) ;

doc.StartA("xmi : type","uml : Property") ;
if prop.Property .hasMultiplicity ()
then (doc.StartA("isOrdered", Util ‘ToStringBool (prop.Property .getMultiplicity ().getIsOrdered ()));

AddAssociationMp(prop.Property .getMultiplicity ())
) ;

if ¬ prop.IsNavigable
then extensionConectorNonNavigable := extensionConectorNonNavigable∪

{associationEndId};
if prop.Property .hasIsStatic ()
then doc.StartA("isStatic", Util ‘ToStringBool (prop.Property .getIsStatic ()));
doc.StartE ("type") ;
doc.StartA("xmi :idref ", GetTypeId (prop.Property .getType ()));
doc.StopE ("type") ;
doc.StopE ("ownedEnd") ;
doc.StartE ("memberEnd") ;
doc.StartA("xmi : idref ", associationEndId) ;
doc.StopE ("memberEnd")

)
) ;

doc.StopE (oe)
)

);
protected

AddAssociationMp : IUmlMultiplicityElement o→ ()
AddAssociationMp (me) 4

(doc.StartE ("lowerValue") ;
doc.StartA("value", Util ‘ToString [N] (me.getLower ())) ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("xmi : type","uml : LiteralInteger") ;
doc.StopE ("lowerValue") ;
if me.hasUpper ()
then (doc.StartE ("upperValue") ;

doc.StartA("value", Util ‘ToString [N] (me.getUpper ()));
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("xmi : type","uml : LiteralInteger") ;
doc.StopE ("upperValue")

)

194 APPENDIX F. MODEL COVERAGE

else (doc.StartE ("upperValue") ;
doc.StartA("value"," ∗ ") ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("xmi : type","uml : LiteralString") ;
doc.StopE ("upperValue")

)
);

protected
AddGeneralization : IUmlClassNameType∗ o→ ()
AddGeneralization (supers) 4

(for all a ∈ elems supers
do (doc.StartE ("generalization") ;

doc.StartA("xmi : type","uml : Generalization") ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("general", classes (a.getName ())) ;
doc.StopE ("generalization")

)
);

protected
AddTemplates : IUmlTemplateSignature o→ ()
AddTemplates (tps) 4

(doc.StartE ("ownedTemplateSignature") ;
doc.StartA("xmi : type","uml : TemplateSignature") ;
doc.StartA(ID-TAG , GetNextId ()) ;
for all a ∈ tps.getTemplateParameters ()
do (dcl parameterId : String := GetNextId ();

F.1. TRANSFORMING FROM VDM TO UML 195

doc.StartE ("ownedParameter") ;
doc.StartA("xmi :type","uml :ClassifierTemplateParameter");
doc.StartA(ID-TAG , parameterId) ;
doc.StartE ("ownedElement") ;
doc.StartA("xmi : type","uml : Class") ;
doc.StartA(ID-TAG , GetNextId ()) ;
doc.StartA("name", a.getName ()) ;
doc.StartA("templateParameter", parameterId) ;
doc.StopE ("ownedElement") ;
doc.StopE ("ownedParameter") ;
doc.StartE ("parameter") ;
doc.StartA("xmi : idref ", parameterId) ;
doc.StopE ("parameter")

) ;
doc.StopE ("ownedTemplateSignature")

);
protected

GetUmlPrimitiveTypeId : IUmlType o→ String
GetUmlPrimitiveTypeId (t) 4

cases true:
(isofclass (IUmlBoolType, t))→

return primitiveTypes ("bool"),
(isofclass (IUmlIntegerType, t))→

return primitiveTypes ("int"),
(isofclass (IUmlUnlimitedNatural , t))→

return primitiveTypes ("unlimitedNatural"),
(isofclass (IUmlCharType, t))→

return primitiveTypes ("char"),
others→ return primitiveTypes ("String")

end;
protected

196 APPENDIX F. MODEL COVERAGE

AddStdTypes : () o→ ()
AddStdTypes () 4

(primitiveTypes := primitiveTypes †
{"bool" 7→ AddPrimitiveType ("bool")};

primitiveTypes := primitiveTypes †
{"int" 7→ AddPrimitiveType ("int")};

primitiveTypes := primitiveTypes †
{"char" 7→ AddPrimitiveType ("char")};

primitiveTypes := primitiveTypes †
{"unlimitedNatural" 7→ AddPrimitiveType ("unlimitedNatural")};

primitiveTypes := primitiveTypes †
{"String" 7→ AddPrimitiveType ("String")};

primitiveTypes := primitiveTypes †
{"NotSupportedType" 7→ AddPrimitiveType ("NotSupportedType")}

);
protected

AddPrimitiveType : String o→ String
AddPrimitiveType (typeName) 4

(doc.StartE (oe) ;
doc.StartA("name", typeName) ;
doc.StartA("visibility","public") ;
let tid = GetNextId () in
(doc.StartA(ID-TAG , tid) ;

doc.StartA("xmi : type","uml : Class") ;
doc.StopE (oe) ;
return tid

)
);

protected
GetTypeId : IUmlType o→ String
GetTypeId (t) 4

cases true:
(isofclass (IUmlClassNameType, t))→

let qc : IUmlClassNameType = t in
(if ∃ x ∈ dom classes · x = qc.getName ()

then (return classes (qc.getName ())
)

else (return primitiveTypes ("NotSupportedType")
)

),

F.1. TRANSFORMING FROM VDM TO UML 197

(isofclass (IUmlBoolType, t)),
(isofclass (IUmlIntegerType, t)),
(isofclass (IUmlCharType, t)),
(isofclass (IUmlUnlimitedNatural , t))→ return GetUmlPrimitiveTypeId (t),
others→ return primitiveTypes ("NotSupportedType")

end;
protected

GetNextId : () o→ String
GetNextId () 4

(id := id + 1;
return GetId (id)

)
functions
protected

GetId : Z→ String
GetId (idNum) 4

"VDM ."y Util ‘ToString [Z] (idNum);
protected

GetVisibilityKind : IUmlVisibilityKind → String
GetVisibilityKind (visibility) 4

cases visibility .getValue () :
(UmlVisibilityKindQuotes‘IQPUBLIC)→ ("public"),
(UmlVisibilityKindQuotes‘IQPRIVATE)→ ("private"),
(UmlVisibilityKindQuotes‘IQPROTECTED)→ ("protected")

end
end Uml2XmiEAxml

Test Suite : vdm.tc
Class : Uml2XmiEAxml

Name #Calls Coverage

Uml2XmiEAxml‘Save 19
√

Uml2XmiEAxml‘GetId 406
√

Uml2XmiEAxml‘AddClass 38
√

Uml2XmiEAxml‘GetNextId 383
√

Uml2XmiEAxml‘GetTypeId 43 86%
Uml2XmiEAxml‘AddStdTypes 19

√

Uml2XmiEAxml‘AddPropeties 38
√

Uml2XmiEAxml‘AddTemplates 1
√

Uml2XmiEAxml‘AddConstraint 2 98%
Uml2XmiEAxml‘AddExstention 19

√

Uml2XmiEAxml‘AddOperstions 38
√

198 APPENDIX F. MODEL COVERAGE

Name #Calls Coverage

Uml2XmiEAxml‘CreateXmlFile 19
√

Uml2XmiEAxml‘AddAssociation 17
√

Uml2XmiEAxml‘AddDefinitions 57
√

Uml2XmiEAxml‘AddAssociationMp 53
√

Uml2XmiEAxml‘AddPrimitiveType 114
√

Uml2XmiEAxml‘GenerateClassIds 19
√

Uml2XmiEAxml‘AddGeneralization 1
√

Uml2XmiEAxml‘GetVisibilityKind 65
√

Uml2XmiEAxml‘GetUmlPrimitiveTypeId 32 73%

Total Coverage 98%

F.2. TRANSFORMING UML TO VDM 199

F.2 Transforming UML to VDM

In this section classes used to transform a UML model into VDM is shown.

F.2.1 Convert XMI to a UML model (Xml2UmlModel)

Convert the XMI document to the UML AST.

VisitXmlDocument Create UML model form document. If a valid document is passed
the result variable will contain the result parsed document.

exstractClass Exstract UML class from XML element.

build defBlock Create property definitions form XML property element. Attribute type
is property.

build Property Create property from property element.

getDefaultValue Get default value. Initial value.

getMultiplicity Get multiplicity.

build Operation Create operation from xml element element.

build Constraint Create constraint from constraint elements.

build Association Create association from association element.

lookUpType Get UmlType from XML type name.

VisitXmlEntity Visit element and build classes or association depended on the element
type attribute.

hasAttribute Test if a element has an attribute with a specific name.

hasAttributeValue Test if a element has a specific element with a specific name and
type.

isAttributeType Test if a element has a specific type. By looking up the type attribute.

getElementType Get the UML type attribute value or the name of the element if no
such attribute exists.

getAttribute Get XML attribute from name. If unknown return nil.

GetVisibility Convert visibility name to UmlVisibility type.

build Collobration Create a Collaboration from a XML node.

build Interaction Create a Collaboration from a XML node.

200 APPENDIX F. MODEL COVERAGE

build Message Create a Collaboration from a XML node.

build Fragment Delegating the creation of a fragment to the responsible operation only
needed because limitation in Java Code Gen.

build Mos Create MOS from XmlElement.

build Bes Create BES from XmlElement.

build Combi Create CombinedFragment from XmlElement.

GetIntOperationKind Get interaction kind from a string.

build Operand Create Operand from XmlElement.

GetCoveredExtension Get covered extension. Exstracts covered string.

GetCovered Get covered seq of ids.

GetGuard Get guard from entity.

getGuardConstraintValue Get value of constraint on a guard.

buildCallEventMap Build id to callEvent map.

class Xml2UmlModel is subclass of XmlVisitor
types

public String = char∗

instance variables
public result : [IUmlModel] := nil ;
primiticeTypes : String-set := {"char","int","bool","String","unlimitedNatural","NotSupportedType"};
classes : IUmlClass-set := {};
associations : IUmlAssociation-set := {};
constraints : IUmlConstraint -set := {};
classesTypeMap : String m→ String := {7→};
collaborations : IUmlCollaboration-set := {};
idToclassesMap : String m→ IUmlClass := {7→};
idToOperationMap : String m→ IUmlOperation := {7→};
idToClallEventMap : String m→ IUmlCallEvent := {7→};
lifeLineMap : String m→ IUmlLifeLine := {7→};
mosMap : String m→ IUmlMos := {7→};
besMap : String m→ IUmlBes := {7→};
combiMap : String m→ IUmlCombinedFragment := {7→};

operations
public

F.2. TRANSFORMING UML TO VDM 201

VisitXmlDocument : XmlDocument o→ ()
VisitXmlDocument (doc) 4

(dcl root : XmlEntity := hd doc.entities.entities ,
firstPackageAndRoot : XmlEntity∗ := root .entities.entitiesy

[root],
model : XmlEntity := hd [firstPackageAndRoot (i) | i ∈

inds firstPackageAndRoot ·
firstPackageAndRoot (i).name = "uml :

Model"],
package : XmlEntity := hd [model .entities.entities (i) | i ∈

inds model .entities.entities ·
isAttributeType (model .entities.entities (i),"uml :

Package")];

202 APPENDIX F. MODEL COVERAGE

let pes = package.entities.entities in
(classesTypeMap := classesTypeMap†{getAttribute (pes (i),"xmi :

id").val 7→ getAttribute (pes (i),"name").val | i ∈ inds pes ·
isAttributeType (pes (i),"uml :

Class")};
classes := classes∪{exstractClass (pes (i)) | i ∈ inds pes ·

isAttributeType (pes (i),"uml :Class")∧

(getAttribute (pes (i),"name").val 6∈
primiticeTypes)};

associations := associations∪{build -Association (pes (i)) |
i ∈ inds pes ·

isAttributeType (pes (i),"uml :Association")};
constraints := constraints ∪ {build -Constraint (pes (i)) |

i ∈ inds pes ·
isAttributeType (pes (i),"uml :Constraint")};

idToClallEventMap := buildCallEventMap ({(pes (i)) | i ∈
inds pes ·

isAttributeType (pes (i),"uml :
CallEvent")});

collaborations := collaborations∪{build -Collobration (pes (i)) |
i ∈ inds pes ·

isAttributeType (pes (i),"uml :
Collaboration")}

) ;
result := new UmlModel (getAttribute (package,"name").val ,

classes∪associations∪constraints∪
collaborations)

);
private

exstractClass : XmlEntity o→ IUmlClass
exstractClass (e) 4

let name : char∗ = getAttribute (e,"name").val ,
dBlocks : (IUmlDefinitionBlock -set) = build -defBlock (e, name),
abstract : B = if hasAttribute (e,"isAbstract")

then StdLib‘StringToBool (getAttribute (e,"isAbstract").val)
else false,

supers : IUmlClassNameType∗ = [],
visibility : (IUmlVisibilityKind) =

new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPUBLIC),

F.2. TRANSFORMING UML TO VDM 203

isStatic : (B) =
false,

active : (B) = if hasAttribute (e,"isActive")
then let a = getAttribute (e,"isActive") in

if a 6= nil
then StdLib‘StringToBool (a.val)
else false

else false,
template : [IUmlTemplateSignature] = nil ,
id : String = getAttribute (e,"xmi : id").val ,
cls : IUmlClass =

new UmlClass (name,

dBlocks,

abstract ,
supers,

visibility ,

isStatic,

active,

template) in
(idToclassesMap := idToclassesMap † {id 7→ cls};

return cls
)

pre isAttributeType (e,"uml : Class") ;
private

build -defBlock : XmlEntity × String o→ (IUmlDefinitionBlock -set)
build -defBlock (e, name) 4

let eList = e.entities.entities ,
props = {build -Property (eList (i), name) |

i ∈ inds eList · isAttributeType (eList (i),"uml :
Property")},

ops = {build -Operation (p) |
p ∈ elems eList ·isAttributeType (p,"uml :Operation")} in

return {new UmlOwnedProperties (props)}∪{new UmlOwnedOperations (ops)};
private

build -Property : XmlEntity × String o→ IUmlProperty
build -Property (e, ownerClass) 4

let name : char∗ = getAttribute (e,"name").val ,
visibility : (IUmlVisibilityKind) = if hasAttribute (e,"visibility")

then GetVisibility (getAttribute (e,"visibility"))
else new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPRIVATE),

multiplicity : [IUmlMultiplicityElement] = getMultiplicity (e),

204 APPENDIX F. MODEL COVERAGE

type : (IUmlType) = lookUpType (e),
isReadOnly : [B] =

if hasAttribute (e,"isReadOnly")
then StdLib‘StringToBool (getAttribute (e,"isReadOnly").val)
else false,

default : [char∗] = getDefaultValue (e),
isComposite : (B) = false,
isDerived : [B] = false,
isStatic : [B] = false,
qualifier : [IUmlType] =

nil in
return new UmlProperty (name,

visibility ,

multiplicity ,

type,

isReadOnly ,

default ,
isComposite,

isDerived ,

isStatic,

ownerClass,

qualifier)
pre isAttributeType (e,"uml : Property") ;

private
getDefaultValue : XmlEntity o→ [String]
getDefaultValue (e) 4

let eList = e.entities.entities ,
tmp = {getAttribute (el ,"value").val | el ∈ elems eList ·el .name =

"defaultValue"} in
if card tmp > 0
then let t ∈ tmp in

return t
else return nil ;

private
getMultiplicity : XmlEntity o→ [IUmlMultiplicityElement]
getMultiplicity (e) 4

let eList = e.entities.entities ,
lowerSet = {getAttribute (el ,"value").val | el ∈ elems eList ·

el .name = "lowerValue" ∧ hasAttribute (e,"value")},

F.2. TRANSFORMING UML TO VDM 205

upperSet = {getAttribute (el ,"value").val | el ∈ elems eList ·
el .name = "upperValue" ∧ hasAttribute (e,"value")} in

if card upperSet = 0 ∧ card lowerSet = 0
then return nil
else let lower : N = if card lowerSet = 0

then 0
else let p ∈ lowerSet in

StdLib‘StringToInt (p),
upper : [N] = if card upperSet = 0

then nil
else let p ∈ upperSet in

StdLib‘StringToInt (p) in
return new UmlMultiplicityElement (false, false, lower , upper);

private
build -Operation : XmlEntity o→ IUmlOperation
build -Operation (e) 4

let name : char∗ = getAttribute (e,"name").val ,
visibility : (IUmlVisibilityKind) = GetVisibility (getAttribute (e,"visibility")),
multiplicity : IUmlMultiplicityElement = new UmlMultiplicityElement (false, false, 0, 0),
isQuery : B =

if hasAttribute (e,"isQuery")
then StdLib‘StringToBool (getAttribute (e,"isQuery").val)
else false,

type : [IUmlType] = nil ,
isStatic : B = if hasAttribute (e,"isStatic")

then StdLib‘StringToBool (getAttribute (e,"isStatic").val)
else false,

id : String = getAttribute (e,"xmi : id").val ,
operation : IUmlOperation = new UmlOperation (name,

visibility ,

multiplicity ,

isQuery ,

type,

isStatic,

nil) in
(idToOperationMap := idToOperationMap†{id 7→ operation};

return operation
)

pre isAttributeType (e,"uml : Operation")
functions
private

206 APPENDIX F. MODEL COVERAGE

build -Constraint : XmlEntity → IUmlConstraint
build -Constraint (e) 4

let elist = e.entities.entities,

ids = {getAttribute (p,"xmi : idref ").val | p ∈ elems elist ·
hasAttribute (p,"xmi : idref ")},

specification : String = hd Util ‘SetToSeq [char∗] ({p.data.data |
p ∈ elems elist · p.name = "body"}) in

new UmlConstraint (ids, new UmlLiteralString (specification))
pre isAttributeType (e,"uml : Constraint")

operations
private

build -Association : XmlEntity o→ IUmlAssociation
build -Association (e) 4

let elist = e.entities.entities ,
props = {elist (i) | i ∈ inds elist ·isAttributeType (elist (i),"uml :

Property")},
ownedNavivableEnds : (IUmlProperty-set) = {build -Property (p,"") |

p ∈ props · hasAttributeValue (p,"name","")},
one = Util ‘SetToSeq [IUmlProperty] (ownedNavivableEnds),
ownerClassType = hd [one (i).getType () | i ∈ inds one],
ownerClass = let ct : IUmlClassNameType = ownerClassType in

ct .getName (),
ownedEnds : (IUmlProperty-set) = {build -Property (p, ownerClass) |

p ∈ props · len getAttribute (p,"name").val > 0},
name : char∗ = getAttribute (e,"name").val ,
id : String = getAttribute (e,"xmi : id").val in

return new UmlAssociation (ownedEnds, ownedNavivableEnds, name, id)

pre isAttributeType (e,"uml : Association") ;
private

lookUpType : XmlEntity o→ IUmlType
lookUpType (e) 4

let elist = e.entities.entities ,
typeOption1 = if hasAttribute (e,"type")

then {getAttribute (e,"type").val}
else {},

F.2. TRANSFORMING UML TO VDM 207

typeOption2 = {getAttribute (elist (i),"xmi : idref ").val | i ∈
inds elist · elist (i).name = "type"} ∪

{a.val | a ∈ {getAttribute (e,"type")} · a 6=
nil } in

let id ∈ typeOption1 ∪ typeOption2 in
let typeName = if id ∈ dom classesTypeMap

then classesTypeMap (id)
else nil in

cases typeName:
nil → return new UmlIntegerType (),
"String"→ return new UmlStringType (),
"int"→ return new UmlIntegerType (),
"bool"→ return new UmlBoolType (),
"char"→ return new UmlCharType (),
"unlimitedNatural"→ return new UmlUnlimitedNatural (),
others→ return new UmlClassNameType (typeName)

end;
public

VisitXmlEntity : XmlEntity o→ ()
VisitXmlEntity (e) 4

(classes := classes ∪ {exstractClass (entity) | entity ∈ {e} ·
isAttributeType (entity ,"uml : Class")∧
(getAttribute (entity ,"name").val 6∈ primiticeTypes)};

associations := associations∪{build -Association (entity) | entity ∈
{e} ·

isAttributeType (entity ,"uml :Association")}
)

functions
private

hasAttribute : XmlEntity × String → B
hasAttribute (e, name) 4

let list = e.attributes.attributes in
∃ i ∈ inds list · list (i).name = name;

private
hasAttributeValue : XmlEntity × String × String → B
hasAttributeValue (e, name, val) 4

let list = e.attributes.attributes in
∃ i ∈ inds list · list (i).name = name ∧ list (i).val = val ;

private

208 APPENDIX F. MODEL COVERAGE

isAttributeType : XmlEntity × String → B
isAttributeType (e, val) 4

hasAttributeValue (e,"xmi : type", val);
private

getElementType : XmlEntity → String
getElementType (e) 4

if getAttribute (e,"xmi : type") 6= nil
then getAttribute (e,"xmi : type").val
else e.name;

private
getAttribute : XmlEntity × String → [XmlAttribute]
getAttribute (e, name) 4

let list = e.attributes.attributes,

attList = [list (i) | i ∈ inds list · list (i).name = name] in
if len attList > 0
then hd attList
else nil ;

private static
GetVisibility : [XmlAttribute]→ IUmlVisibilityKind
GetVisibility (v) 4

if v 6= nil
then cases v .val :

"private"→
new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPRIVATE),

"public"→
new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPUBLIC),

"protected"→
new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPROTECTED)

end
else new UmlVisibilityKind (UmlVisibilityKindQuotes‘IQPRIVATE)

operations
private

build -Collobration : XmlEntity o→ IUmlCollaboration
build -Collobration (e) 4

let elist = e.entities.entities ,
interactions = {build -Interaction (p) | p ∈ elems elist ·isAttributeType (p,"uml :

Interaction")} in
return new UmlCollaboration (interactions)

pre isAttributeType (e,"uml : Collaboration") ;
private

F.2. TRANSFORMING UML TO VDM 209

build -Interaction : XmlEntity o→ IUmlInteraction
build -Interaction (e) 4

let elist = e.entities.entities ,
props : String m→ IUmlProperty = {getAttribute (p,"xmi :id").val 7→

build -Property (p,"") | p ∈ elems elist ·isAttributeType (p,"uml :Property")} in
(lifeLineMap := lifeLineMap†{getAttribute (p,"xmi :id").val 7→

new UmlLifeLine (getAttribute (p,"name").val ,
props (getAttribute (p,"represents").val).getType ()) |

p ∈ elems elist ·
p.name = "lifeline"};

let name : char∗ = getAttribute (e,"name").val ,
lifeLines : IUmlLifeLine-set = rng lifeLineMap,
mosfragments : IUmlInteractionFragment -set =

{build -Fragment (f) | f ∈ elems elist ·
isAttributeType (f ,"uml :MessageOccurrenceSpecification")},

besfragments : IUmlInteractionFragment -set =
{build -Fragment (f) | f ∈ elems elist ·

isAttributeType (f ,"uml :BehaviorExecutionSpecification")},
combifragments : IUmlInteractionFragment -set =

{build -Fragment (f) | f ∈ elems elist ·
isAttributeType (f ,"uml :CombinedFragment")},

messages : IUmlMessage∗ =
[build -Message (elist (i)) | i ∈ inds elist ·

elist (i).name = "message"] in
return new UmlInteraction (name,

lifeLines,

mosfragments∪besfragments∪combifragments,

messages)
)

pre isAttributeType (e,"uml : Interaction") ;
private

build -Message : XmlEntity o→ IUmlMessage
build -Message (e) 4

let messageKind : IUmlMessageKind =
new UmlMessageKind (UmlMessageKindQuotes‘IQCOMPLETE),

messageSort : IUmlMessageSort = new UmlMessageSort (UmlMessageSortQuotes‘IQSYNCHCALL),
mosSend : IUmlMos = mosMap (getAttribute (e,"sendEvent").val),
mosRecive : IUmlMos = mosMap (getAttribute (e,"receiveEvent").val),
args : (IUmlValueSpecification∗) = [],

210 APPENDIX F. MODEL COVERAGE

name : String = mosRecive.getEvent ().getOperation ().getName () in
return new UmlMessage (name,

messageKind ,

messageSort ,
mosSend ,

mosRecive,

args)
pre e.name = "message" ;

private
build -Fragment : XmlEntity o→ IUmlInteractionFragment
build -Fragment (e) 4

cases getElementType (e):
"uml : MessageOccurrenceSpecification"→

return build -Mos (e),
"uml : BehaviorExecutionSpecification"→

return build -Bes (e),
"uml : CombinedFragment"→

return build -Combi (e)
end

pre isAttributeType (e,"uml : MessageOccurrenceSpecification") ∨
isAttributeType (e,"uml : BehaviorExecutionSpecification") ∨
isAttributeType (e,"uml : CombinedFragment") ;

private
build -Mos : XmlEntity o→ IUmlMos
build -Mos (e) 4

let name = getAttribute (e,"name").val ,
message : [IUmlMessage] = nil ,
lifeLines : IUmlLifeLine = let l ∈ {lifeLineMap (c) | c ∈ elems GetCovered (e)} in

l ,
id = getAttribute (e,"xmi : id").val ,
event : IUmlCallEvent = idToClallEventMap (getAttribute (e,"event").val),
mos = new UmlMos (name,

message,

lifeLines,

event) in
(mosMap := mosMap † {id 7→ mos};

return mos
)

pre isAttributeType (e,"uml : MessageOccurrenceSpecification") ;
private

F.2. TRANSFORMING UML TO VDM 211

build -Bes : XmlEntity o→ IUmlBes
build -Bes (e) 4

let name = getAttribute (e,"name").val ,
startOc : IUmlMos = mosMap (getAttribute (e,"start").val),
finishOc : IUmlMos = mosMap (getAttribute (e,"finish").val),
covered : IUmlLifeLine-set = {lifeLineMap (c) | c ∈ elems GetCovered (e)},
id = getAttribute (e,"xmi : id").val ,
bes = new UmlBes (name,

startOc,

finishOc,

covered) in
(besMap := besMap † {id 7→ bes};

return bes
)

pre isAttributeType (e,"uml : BehaviorExecutionSpecification") ;
private

build -Combi : XmlEntity o→ IUmlCombinedFragment
build -Combi (e) 4

let elist = e.entities.entities ,
name = getAttribute (e,"name").val ,
interactionOperatorKind : IUmlInteractionOperatorKind = GetIntOperationKind (getAttribute (e,"interactionOperator").val),
operands : IUmlInteractionOperand∗ = [build -Operand (elist (i)) |

i ∈ inds elist · elist (i).name = "operand"],
covered : IUmlLifeLine-set = {lifeLineMap (c) | c ∈ elems GetCovered (e)},
id = getAttribute (e,"xmi : id").val ,
combi = new UmlCombinedFragment (name,

interactionOperatorKind ,

operands,

covered) in
(combiMap := combiMap † {id 7→ combi};

return combi
)

pre isAttributeType (e,"uml : CombinedFragment")
functions
private

GetIntOperationKind : String → IUmlInteractionOperatorKind
GetIntOperationKind (text) 4

cases text :
"alt"→ new UmlInteractionOperatorKind (UmlInteractionOperatorKindQuotes‘IQALT),
"loop"→ new UmlInteractionOperatorKind (UmlInteractionOperatorKindQuotes‘IQLOOP)

end

212 APPENDIX F. MODEL COVERAGE

pre text = "alt" ∨ text = "loop"
operations
private

build -Operand : XmlEntity o→ IUmlInteractionOperand
build -Operand (e) 4

let elist = e.entities.entities ,
name : char∗ = "",
fragments : IUmlInteractionFragment∗ = [],
covered : IUmlMos-set = {mosMap (c) | c ∈ elems StdLib‘Split (conc [GetCoveredExtension (elist (i)) |

i ∈ inds elist ·
hasAttributeValue (elist (i),"extender","umltrans")],

’ ’)},
guard : [IUmlInteractionConstraint] = if ∃ gu ∈ elems elist · gu.name =

"guard"
then GetGuard (let g ∈ {p |

p ∈ elems elist · p.name = "guard"} in
g)

else nil in
return new UmlInteractionOperand (name,

fragments,

covered ,

guard)
pre e.name = "operand"

functions
private

GetCoveredExtension : XmlEntity → char∗

GetCoveredExtension (e) 4

let elist = e.entities.entities in
let p ∈ {co.data.data | co ∈ elems elist ·co.name = "covered"} in
p

pre hasAttributeValue (e,"extender","umltrans") ∧
∃ el ∈ elems e.entities.entities · el .data 6= nil ∧el .name = "covered"

;
private

GetCovered : XmlEntity → String∗

GetCovered (e) 4

let text : String = getAttribute (e,"covered").val in
StdLib‘Split (text , ’ ’)

pre hasAttribute (e,"covered") ;
private

F.2. TRANSFORMING UML TO VDM 213

GetGuard : XmlEntity → IUmlInteractionConstraint
GetGuard (e) 4

let elist = e.entities.entities,

minint = let tmp ∈ {getGuardConstraintValue (p) |
p ∈ elems elist ·

p.name = "minint"} in
tmp,

maxint = let tmp ∈ {getGuardConstraintValue (p) |
p ∈ elems elist ·

p.name = "maxint"} in
tmp in

new UmlInteractionConstraint (minint , maxint)
pre e.name = "guard" ;

private
getGuardConstraintValue : XmlEntity → [IUmlValueSpecification]
getGuardConstraintValue (e) 4

if hasAttribute (e,"value")∧isAttributeType (e,"uml :LiteralInteger")
then new UmlLiteralInteger (StdLib‘StringToInt (getAttribute (e,"value").val))
else nil

operations
private

buildCallEventMap : XmlEntity-set
o→ String m→ IUmlCallEvent

buildCallEventMap (elist) 4

let m = {getAttribute (e,"xmi :id").val 7→ new UmlCallEvent (idToOperationMap (getAttribute (e,"operation").val)) |

e ∈ elist} in
return m

pre ∀ e ∈ elist · isAttributeType (e,"uml : CallEvent") ;
public

VisitXmlAttribute : XmlAttribute o→ ()
VisitXmlAttribute (-) 4

skip;
public

VisitXmlData : XmlData o→ ()
VisitXmlData (-) 4

skip
end Xml2UmlModel

Test Suite : vdm.tc
Class : Xml2UmlModel

Name #Calls Coverage

Xml2UmlModel‘GetGuard 2
√

214 APPENDIX F. MODEL COVERAGE

Name #Calls Coverage

Xml2UmlModel‘build-Bes 8
√

Xml2UmlModel‘build-Mos 12
√

Xml2UmlModel‘GetCovered 23
√

Xml2UmlModel‘lookUpType 32 88%
Xml2UmlModel‘build-Combi 3

√

Xml2UmlModel‘VisitXmlData 0 0%
Xml2UmlModel‘getAttribute 572

√

Xml2UmlModel‘hasAttribute 220
√

Xml2UmlModel‘GetVisibility 33 88%
Xml2UmlModel‘build-Message 6

√

Xml2UmlModel‘build-Operand 4
√

Xml2UmlModel‘exstractClass 15 98%
Xml2UmlModel‘VisitXmlEntity 0 0%
Xml2UmlModel‘build-Fragment 23

√

Xml2UmlModel‘build-Property 32
√

Xml2UmlModel‘build-defBlock 15
√

Xml2UmlModel‘getElementType 23 85%
Xml2UmlModel‘build-Operation 5 77%
Xml2UmlModel‘getDefaultValue 32

√

Xml2UmlModel‘getMultiplicity 32 52%
Xml2UmlModel‘isAttributeType 715

√

Xml2UmlModel‘VisitXmlDocument 7
√

Xml2UmlModel‘build-Constraint 1
√

Xml2UmlModel‘VisitXmlAttribute 0 0%
Xml2UmlModel‘buildCallEventMap 7

√

Xml2UmlModel‘build-Association 6
√

Xml2UmlModel‘build-Interaction 2
√

Xml2UmlModel‘hasAttributeValue 739
√

Xml2UmlModel‘build-Collobration 2
√

Xml2UmlModel‘GetCoveredExtension 4
√

Xml2UmlModel‘GetIntOperationKind 3
√

Xml2UmlModel‘getGuardConstraintValue 4
√

Total Coverage 92%

F.2. TRANSFORMING UML TO VDM 215

F.2.2 Transform UML to VDM (Uml2Vdm))

Transform a UML AST into a OML AST.

init Convert UML model to OmlDocument.

build classes Build Oml Classes from the Uml model. This needs the constraints and
associations to be pre parsed before this is called.

build class Build Oml class from Uml class.

build defs Build definitions from Uml definition block. Here both values and instance
variables are extracted.

build defValues Build value definitions from Uml properties.

build value Build value definition from a Uml property.

build defInstanceVariables Build instance variable definition form Uml property.

build instanceVariable Create instance variable from Uml property.

build defOperations Build operation definition form Uml property.

build Operation Create operation from Uml property.

extractInstanceVarsFromAssociations extract instance variables form associations.

hasXorConstraint Test of an association has a constraint.

extractBinaryAssociation extract property from binary association.

extractUnionAssociation extract union type from association.

extractProductAssociation extract product type from association.

CreateProductType Create product type from Uml type.

CreateInstanceVar Create instance variable form Uml property and Oml type.

AddInstanceVarToClass Add instance variable to the owning class.

getAssociationInstanceVars Get instance variabled for a specific class extracted from
associations.

getDefaultExpression Get default expression from Uml default value and type.

ConvertVisibility Convert visibility to scope .

ConvertType Convert type and multiplicity to Omltype .

216 APPENDIX F. MODEL COVERAGE

ApplyMultiplicity add multiplicity extracted information to type. eg chat with upper*
is a set of char.

build traces Build traces from interaction.

build trace build a trace definition from a SD by using the name of the SD as the name
of the trace.

getTraceDefinition Get definitions loops through the messages of the SD. It keeps loop-
ing until non of the messages are back. It handles one message at the time and
groups the according to the fragments they are contained in by the interaction
operand.

getLoopDef Get loop definition converts a combined fragment into a Trace definition
item where the repeat pattern is set according to the constraint of the interaction
operand inside the loop where the messages that is used as test is located.

getRpEx Get repeat pattern from an interaction operand the operand is associated with a
message the there by the link to the trace repeat pattern with a test of the message.

getAltDef Get alt definition converts a CF kind of alt into a Choice Definition. Adding
the message that is loceted inside it by the interaction operands.

getMethodApply Get Method Apply from a Message.

getOperand Get Interaction Operand where a message is placed if the message is places
in a IO else return nil.

getCfIoKind Get Combined fragment kind from a set of CF and a InteractionOperand.

class Uml2Vdm
types

public String = char∗

instance variables
classInstanceVars : String m→ IOmlInstanceVariable∗ := {7→};

operations
public

init : IUmlModel o→ IOmlDocument
init (model) 4

let associations = {a | a ∈ model .getDefinitions () ·
isofclass (IUmlAssociation, a)},

F.2. TRANSFORMING UML TO VDM 217

constraints = {a | a ∈ model .getDefinitions () ·
isofclass (IUmlConstraint , a)} in

(extractInstanceVarsFromAssociations(associations, constraints);
return new OmlDocument (model .getName (),

new OmlSpecifications (build -classes (model)), [])
);

public
build -classes : IUmlModel o→ IOmlClass∗

build -classes (model) 4

let traceDefMap : String m→ IOmlTraceDefinitions = build -traces (model),
classes : IUmlClass-set = {c | c ∈ model .getDefinitions () ·

isofclass (IUmlClass, c)} in
return Util ‘SetToSeq [IOmlClass] ({let cName = c.getName (),

traceDef =
if cName ∈ dom traceDefMap
then traceDefMap (cName)
else nil in

build -class (c, traceDef) |
c ∈ classes});

public
build -class : IUmlClass × [IOmlTraceDefinitions] o→ IOmlClass
build -class (c, traceDef) 4

let name : char∗ = c.getName (),
supers = c.getSuperClass (),
inheritanceClause : [OmlInheritanceClause] =

if len supers > 0
then new OmlInheritanceClause ([supers (i).getName () | i ∈

inds supers])
else nil ,

body : IOmlDefinitionBlock -set =
⋃
{build -defs (d) | d ∈ c.getClassBody ()},

bodyWithTrace : IOmlDefinitionBlock -set = if traceDef 6= nil
then body∪{traceDef }
else body ,

systemSpec : B = false,
instVars : IOmlInstanceVariableShape∗ = getAssociationInstanceVars (name),

218 APPENDIX F. MODEL COVERAGE

bodyLst = if len instVars > 0
then bodyWithTrace∪{new OmlInstanceVariableDefinitions (instVars)}
else bodyWithTrace in

return new OmlClass (name,

[],
inheritanceClause,

Util ‘SetToSeq [IOmlDefinitionBlock] (bodyLst),
systemSpec);

public
build -defs : IUmlDefinitionBlock o→ IOmlDefinitionBlock -set
build -defs (db) 4

cases true:
(isofclass (IUmlOwnedProperties, db))→

let tmp : IUmlOwnedProperties = db in
return {build -defValues (tmp)} ∪

{build -defInstanceVariables (tmp)},
(isofclass (IUmlOwnedOperations, db))→

let tmp : IUmlOwnedOperations = db in
return {build -defOperations (tmp)},

others→ return {}
end;

public
build -defValues : IUmlOwnedProperties o→ IOmlDefinitionBlock
build -defValues (block) 4

let props = block .getPropetityList (),
valueProps = {p | p ∈ props ·

p.hasIsReadOnly ()∧p.getIsReadOnly () =
true},

val = {build -value (v) | v ∈ valueProps} in
return new OmlValueDefinitions (Util ‘SetToSeq [IOmlValueDefinition] (val));

public
build -value : IUmlProperty o→ IOmlValueDefinition
build -value (prop) 4

let asyncAccess = false,
statAccess = prop.getIsStatic (),
scope = ConvertVisibility (prop.getVisibility ()),
access = new OmlAccessDefinition (asyncAccess, statAccess, scope),
pattern = new OmlPatternIdentifier (prop.getName ()),
multiplicity = if prop.hasMultiplicity ()

then prop.getMultiplicity ()
else nil ,

F.2. TRANSFORMING UML TO VDM 219

type = ConvertType (prop.getType (), multiplicity),
expression : IOmlExpression =

getDefaultExpression (prop.getDefault (), type),
valueShape = new OmlValueShape (pattern, type, expression) in

return new OmlValueDefinition (access, valueShape)
pre prop.hasDefault () ;

public
build -defInstanceVariables : IUmlOwnedProperties o→ IOmlDefinitionBlock
build -defInstanceVariables (block) 4

let props = block .getPropetityList (),
valueProps = {p | p ∈ props ·

p.hasIsReadOnly () ∧
p.getIsReadOnly () = false},

val = {build -instanceVariable (v) | v ∈ valueProps},
seqVal = Util ‘SetToSeq [IOmlInstanceVariable] (val) in

return new OmlInstanceVariableDefinitions (seqVal);
public

build -instanceVariable : IUmlProperty o→ IOmlInstanceVariable
build -instanceVariable (prop) 4

let asyncAccess = false,
statAccess = prop.getIsStatic (),
scope = ConvertVisibility (prop.getVisibility ()),
access = new OmlAccessDefinition (asyncAccess, statAccess, scope),
multiplicity = if prop.hasMultiplicity ()

then prop.getMultiplicity ()
else nil ,

type = ConvertType (prop.getType (), multiplicity),
expression : [IOmlExpression] =

if prop.hasDefault ()
then getDefaultExpression (prop.getDefault (), type)
else nil ,

assignmentDef =
new OmlAssignmentDefinition (prop.getName (), type, expression) in

return new OmlInstanceVariable (access, assignmentDef);
public

build -defOperations : IUmlOwnedOperations o→ IOmlDefinitionBlock
build -defOperations (block) 4

let props = block .getOperationList (),
valOps = {p | p ∈ props},
val = {build -Operation (v) | v ∈ valOps},

220 APPENDIX F. MODEL COVERAGE

seqVal = Util ‘SetToSeq [IOmlOperationDefinition] (val) in
return new OmlOperationDefinitions (seqVal);

public
build -Operation : IUmlOperation o→ IOmlOperationDefinition
build -Operation (prop) 4

let asyncAccess = false,
statAccess = prop.getIsStatic (),
scope = ConvertVisibility (prop.getVisibility ()),
access = new OmlAccessDefinition (asyncAccess, statAccess, scope),
type = new OmlOperationType (new OmlEmptyType (), new OmlEmptyType ()),
name : char∗ =

prop.getName (),
body = new OmlOperationBody (new OmlSkipStatement (), false, false),
trailer = new OmlOperationTrailer (nil , nil , nil , nil),
explicitOp = new OmlExplicitOperation (name, type, [], body , trailer) in

return new OmlOperationDefinition (access, explicitOp);
public

extractInstanceVarsFromAssociations : IUmlAssociation-set×IUmlConstraint -set
o→

()
extractInstanceVarsFromAssociations (associations, constraints) 4

let normalBiAss =
{a | a ∈ associations ·

¬ hasXorConstraint (constraints, a.getId ()) ∧
(card a.getOwnedEnds ()+card a.getOwnedNavigableEnds ()) =

2},
product =

{a | a ∈ associations ·
¬ hasXorConstraint (constraints, a.getId ()) ∧
(card a.getOwnedEnds ()+card a.getOwnedNavigableEnds ()) >

2},
xor =
{a | a ∈ associations ·

hasXorConstraint (constraints, a.getId ()) ∧
(card a.getOwnedEnds ()+card a.getOwnedNavigableEnds ()) ≥

2} in
(for all a ∈ normalBiAss

F.2. TRANSFORMING UML TO VDM 221

do extractBinaryAssociation
(a.getOwnedEnds () ∪
a.getOwnedNavigableEnds ()) ;

let xorEndss = {(
⋃
{a.getOwnedEnds () ∪

a.getOwnedNavigableEnds () |
a ∈ xor ·
∃ id ∈ c.getConstraintElements ()·

id = a.getId ()}) |
c ∈ constraints} in

for all a ∈ xorEndss
do extractUnionAssociation(a) ;
for all a ∈ product
do extractProductAssociation

(a.getOwnedEnds () ∪
a.getOwnedNavigableEnds ())

);
public

hasXorConstraint : IUmlConstraint -set× String o→ B
hasXorConstraint (constraints, associationId) 4

return ∃ c ∈ constraints ·
if isofclass (IUmlLiteralString , c.getSpecification ())
then let spec : IUmlLiteralString = c.getSpecification () in

spec.getValue () = "xor"
else false ∧

(∃ ce ∈ c.getConstraintElements () ·
ce = associationId);

public
extractBinaryAssociation : IUmlProperty-set

o→ ()
extractBinaryAssociation (props) 4

(let propSeq = Util ‘SetToSeq [IUmlProperty] (props),
pOwnerEnd = hd [propSeq (i) | i ∈ inds propSeq ·

len propSeq (i).getName () = 0],
pTypeEnd = hd [propSeq (i) | i ∈ inds propSeq ·

len propSeq (i).getName () > 0],
clName = let t : IUmlClassNameType = pOwnerEnd .getType () in

t .getName (),
multiplicity = if pTypeEnd .hasMultiplicity ()

then pTypeEnd .getMultiplicity ()
else nil ,

222 APPENDIX F. MODEL COVERAGE

type = ConvertType (pTypeEnd .getType (), multiplicity) in
AddInstanceVarToClass(clName,

CreateInstanceVar (pTypeEnd ,

type))
)

pre card props > 0 ;
public

extractUnionAssociation : IUmlProperty-set
o→ ()

extractUnionAssociation (props) 4

(let ownerEndSet = {p | p ∈ props · len p.getName () = 0},
propSeq = Util ‘SetToSeq [IUmlProperty] (props),
pOwnerEnd = hd Util ‘SetToSeq [IUmlProperty] (ownerEndSet),
pTypeEnd = [propSeq (i) | i ∈ inds propSeq ·

len propSeq (i).getName () > 0],
clName = let t : IUmlClassNameType = pOwnerEnd .getType () in

t .getName (),
endTypes : IOmlType∗ =

Util ‘SetToSeq [IOmlType] ({ConvertType (p.getType (), if p.hasMultiplicity ()
then p.getMultiplicity ()
else nil) |

p ∈ elems pTypeEnd}),
lhs : IOmlType = hd endTypes ,
rhs : IOmlType = hd Util ‘SetToSeq [IOmlType] ((elems endTypes)\

{lhs}),
type = new OmlUnionType (lhs, rhs) in

AddInstanceVarToClass(clName, CreateInstanceVar (hd pTypeEnd , type))
)

pre card props > 0 ;
public

extractProductAssociation : IUmlProperty-set
o→ ()

extractProductAssociation (props) 4

(let ownerEndSet = {p | p ∈ props · len p.getName () = 0},
propSeq = Util ‘SetToSeq [IUmlProperty] (props),
pOwnerEnd = hd Util ‘SetToSeq [IUmlProperty] (ownerEndSet),
pTypeEnd = [propSeq (i) | i ∈ inds propSeq ·

len propSeq (i).getName () > 0],
clName = let t : IUmlClassNameType = pOwnerEnd .getType () in

t .getName (),

F.2. TRANSFORMING UML TO VDM 223

endTypes : IUmlType∗ = Util ‘SetToSeq [IUmlType] ({p.getType () |

p ∈
elems pTypeEnd}),

type : IOmlType = CreateProductType (endTypes) in
AddInstanceVarToClass(clName, CreateInstanceVar (hd pTypeEnd , type))

)
pre card props > 0

functions
private

CreateProductType : IUmlType∗ → IOmlType
CreateProductType (tps) 4

let first = hd tps,

rest = tl tps,

front = ConvertType (first , nil) in
if len tps = 1
then front
else new OmlProductType (front , CreateProductType (rest))

operations
public

CreateInstanceVar : IUmlProperty×IOmlType o→ IOmlInstanceVariable
CreateInstanceVar (prop, type) 4

let asyncAccess =
false,

statAccess = prop.getIsStatic (),
scope = ConvertVisibility (prop.getVisibility ()),
access = new OmlAccessDefinition (asyncAccess, statAccess, scope),
multiplicity = if prop.hasMultiplicity ()

then prop.getMultiplicity ()
else nil ,

type1 = ConvertType (prop.getType (), multiplicity),
expression : [IOmlExpression] =

if prop.hasDefault ()
then getDefaultExpression (prop.getDefault (), type1)
else nil ,

assignmentDef = new OmlAssignmentDefinition (prop.getName (), type, expression) in
return new OmlInstanceVariable (access, assignmentDef);

private
AddInstanceVarToClass : String × IOmlInstanceVariable o→ ()
AddInstanceVarToClass (clName, instanceVar) 4

let existingSet = getAssociationInstanceVars (clName),

224 APPENDIX F. MODEL COVERAGE

addedSet = if len existingSet > 0
then existingSet y [instanceVar]
else [instanceVar] in

classInstanceVars := classInstanceVars † {clName 7→ addedSet};
public

getAssociationInstanceVars : String o→ IOmlInstanceVariableShape∗

getAssociationInstanceVars (clName) 4

if clName ∈ dom classInstanceVars
then return classInstanceVars (clName)
else return [] ;

public
getDefaultExpression : [char∗]× IOmlType o→ [IOmlExpression]
getDefaultExpression (defaultValue, t) 4

if defaultValue = nil
then return nil
else cases true:

(isofclass (IOmlTypeName, t))→
return new OmlNewExpression (new OmlName (nil , defaultValue), [], []),

(isofclass (IOmlIntType, t))→
return new OmlSymbolicLiteralExpression (new OmlNumericLiteral (0)),

(isofclass (IOmlCharType, t))→
return new OmlSymbolicLiteralExpression (new OmlTextLiteral (defaultValue)),

(isofclass (IOmlSeq0Type, t))→
return getDefaultExpression (defaultValue, let tmp:IOmlSeq0Type in

tmp.getType ()),
others→ return nil

end;
public

ConvertVisibility : IUmlVisibilityKind o→ IOmlScope
ConvertVisibility (visibility) 4

let val : N = visibility .getValue () in
cases val :

(UmlVisibilityKindQuotes‘IQPUBLIC)→
return new OmlScope (OmlScopeQuotes‘IQPUBLIC),

(UmlVisibilityKindQuotes‘IQPRIVATE)→
return new OmlScope (OmlScopeQuotes‘IQDEFAULT),

(UmlVisibilityKindQuotes‘IQPROTECTED)→
return new OmlScope (OmlScopeQuotes‘IQPROTECTED)

end;
public

F.2. TRANSFORMING UML TO VDM 225

ConvertType : IUmlType × [IUmlMultiplicityElement] o→ IOmlType
ConvertType (t , mul) 4

cases true:
(isofclass (IUmlClassNameType, t))→

return new OmlTypeName (let tmp : IUmlClassNameType = t in
new OmlName (nil , tmp.getName ())),

(isofclass (IUmlCharType, t))→ return ApplyMultiplicity (new OmlCharType (), mul),
(isofclass (IUmlStringType, t))→ return new OmlSeq0Type (new OmlCharType ()),
(isofclass (IUmlIntegerType, t))→ return ApplyMultiplicity (new OmlIntType (), mul),
(isofclass (IUmlBoolType, t))→ return ApplyMultiplicity (new OmlBoolType (), mul),
(isofclass (IUmlUnlimitedNatural , t))→ return ApplyMultiplicity (new OmlRealType (), mul),
others→ return ApplyMultiplicity (new OmlNatType (), mul)

end;
private

ApplyMultiplicity : IOmlType×[IUmlMultiplicityElement] o→ IOmlType
ApplyMultiplicity (t , mul) 4

if mul = nil
then return t
else if mul .getLower () = 0 ∧ ¬mul .hasUpper ()

then return new OmlSeq0Type (t)
else return t

functions
private

build -traces : IUmlModel → String m→ IOmlTraceDefinitions
build -traces (model) 4

let collOwnedBehavior =
⋃
{let tmp : IUmlCollaboration =

coll in
tmp.getOwnedBehavior () |

coll ∈ model .getDefinitions () ·
isofclass (IUmlCollaboration, coll)} in

merge {build -trace (interaction) | interaction ∈ collOwnedBehavior};
private

226 APPENDIX F. MODEL COVERAGE

build -trace : IUmlInteraction → String m→ IOmlTraceDefinitions
build -trace (interaction) 4

let name = interaction.getName (),
messages : IUmlMessage∗ = interaction.getMessages () in

let defs : IOmlTraceDefinition =
getTraceDefinition (messages, interaction.getFragments (), nil) in

let ownerClass ∈ {m.getSendEvent ().getCovered ().getRepresents () |

m ∈ elems messages} in
{let owr : IUmlClassNameType = ownerClass in
owr .getName () 7→
new OmlTraceDefinitions ([new OmlNamedTrace (name, defs)])};

F.2. TRANSFORMING UML TO VDM 227

getTraceDefinition : IUmlMessage∗×IUmlInteractionFragment -set×
[IUmlInteractionOperand]→

[IOmlTraceDefinition]
getTraceDefinition (msgs, fg , io) 4

if len msgs > 0
then (let m = hd msgs,

rest = if len msgs > 1
then tl msgs
else [],

cfg = {f | f ∈ fg ·isofclass (IUmlCombinedFragment , f)},
op = getOperand (m, cfg) in

(if (io = nil ∧ op = nil) ∨ (io = op)
then let mappDef : IOmlTraceDefinition =

new OmlTraceDefinitionItem ([], getMethodApply (m), nil),
restDef : IOmlTraceDefinition = getTraceDefinition (rest , cfg , op),
defs : IOmlTraceDefinition∗ = [mappDef , restDef] in

let ret : IOmlTraceDefinition = new OmlTraceSequenceDefinition (defs) in
ret

else if op 6= nil ∧ getCfIoKind (fg , op).getValue () =
UmlInteractionOperatorKindQuotes‘IQLOOP

then let loopDef : IOmlTraceDefinition = getLoopDef (m, op),
restDef : [IOmlTraceDefinition] = getTraceDefinition (rest , cfg , op),
defs : IOmlTraceDefinition∗ = if restDef 6= nil

then [loopDef , restDef]
else [loopDef],

ret : IOmlTraceDefinition = new OmlTraceSequenceDefinition (defs) in
ret

else if op 6= nil ∧ getCfIoKind (fg , op).getValue () =
UmlInteractionOperatorKindQuotes‘IQALT

then let altDef : IOmlTraceDefinition = getAltDef (rest , m, cfg , op),
restDef : [IOmlTraceDefinition] = getTraceDefinition (rest , cfg , op),
defs : IOmlTraceDefinition∗ = if restDef 6=

nil
then [altDef , restDef]
else [altDef],

ret : IOmlTraceDefinition = new OmlTraceSequenceDefinition (defs) in
ret

else let ret : IOmlTraceDefinition = new OmlTraceSequenceDefinition () in
ret))

else nil ;
private

228 APPENDIX F. MODEL COVERAGE

getLoopDef : IUmlMessage×[IUmlInteractionOperand]→ IOmlTraceDefinition
getLoopDef (m, io) 4

new OmlTraceDefinitionItem ([],
getMethodApply (m),
getRpEx (io));

private
getRpEx : [IUmlInteractionOperand]→ [IOmlTraceRepeatPattern]
getRpEx (iOperand) 4

if iOperand = nil
then nil
else if iOperand .hasGuard ()

then let guard = iOperand .getGuard (),
min = if guard .hasMinint ()

then let tmp : IUmlLiteralInteger =
guard .getMinint () in

tmp.getValue ()
else nil ,

max = if guard .hasMaxint ()
then let tmp : IUmlLiteralInteger =

guard .getMaxint () in
tmp.getValue ()

else nil in
if min 6= nil ∧min = 0 ∧max = nil
then new OmlTraceZeroOrMore ()
else if min 6= nil ∧min = 1 ∧max = nil

then new OmlTraceOneOrMore ()
else if min 6= nil ∧max 6= nil ∧min = 0 ∧max = 1

then new OmlTraceZeroOrOne ()
else if min 6= nil

then let minL = new OmlNumericLiteral (min),
maxL = if max 6= nil

then new OmlNumericLiteral (max)
else nil in

new OmlTraceRange (minL, maxL)
else nil

else nil ;
private

F.2. TRANSFORMING UML TO VDM 229

getAltDef : IUmlMessage∗×IUmlMessage×IUmlCombinedFragment -set×
[IUmlInteractionOperand]→

IOmlTraceDefinition
getAltDef (msgs, m, fg , io) 4

let mapp = getMethodApply (m),
rest = getTraceDefinition (msgs, fg , io),
defs = if rest 6= nil

then [new OmlTraceDefinitionItem ([], mapp, nil), rest]
else [new OmlTraceDefinitionItem ([], mapp, nil)] in

new OmlTraceChoiceDefinition (defs);
private

getMethodApply : IUmlMessage → IOmlTraceMethodApply
getMethodApply (message) 4

let methodName : String =
message.getSendReceive ().getEvent ().getOperation ().getName (),

variableName : String =
message.getSendReceive ().getCovered ().getName (),

args : IOmlExpression∗ = [] in
new OmlTraceMethodApply (variableName, methodName, args);

private
getOperand : IUmlMessage×IUmlCombinedFragment -set→ [IUmlInteractionOperand]
getOperand (m, fragments) 4

let ops = {io | io ∈ elems conc Util ‘SetToSeq [IUmlInteractionOperand∗]
(
{f .getOperand () | f ∈ fragments ·

isofclass (IUmlCombinedFragment , f)})·

∃mos ∈ io.getCovered () ·
mos = m.getSendEvent ()} in

if card ops > 0
then let p ∈ ops in

p
else nil ;

private

230 APPENDIX F. MODEL COVERAGE

getCfIoKind : IUmlCombinedFragment -set×IUmlInteractionOperand
→ IUmlInteractionOperatorKind

getCfIoKind (fms, io) 4

let cf ∈
{f | f ∈ fms ·

isofclass (IUmlCombinedFragment , f) ∧
∃ iop ∈ elems f .getOperand () · iop = io} in

cf .getInteractionOperator ()
end Uml2Vdm

Test Suite : vdm.tc
Class : Uml2Vdm

Name #Calls Coverage

Uml2Vdm‘init 7
√

Uml2Vdm‘getRpEx 2 85%
Uml2Vdm‘getAltDef 3

√

Uml2Vdm‘build-defs 30 92%
Uml2Vdm‘getLoopDef 2

√

Uml2Vdm‘getOperand 7
√

Uml2Vdm‘ConvertType 26 70%
Uml2Vdm‘build-class 15 96%
Uml2Vdm‘build-trace 2

√

Uml2Vdm‘build-value 1 92%
Uml2Vdm‘getCfIoKind 8

√

Uml2Vdm‘build-traces 7
√

Uml2Vdm‘build-classes 7
√

Uml2Vdm‘getMethodApply 7
√

Uml2Vdm‘build-Operation 5
√

Uml2Vdm‘build-defValues 15
√

Uml2Vdm‘hasXorConstraint 18 62%
Uml2Vdm‘ApplyMultiplicity 14 27%
Uml2Vdm‘ConvertVisibility 23

√

Uml2Vdm‘CreateInstanceVar 4 78%
Uml2Vdm‘CreateProductType 3

√

Uml2Vdm‘getTraceDefinition 12 96%
Uml2Vdm‘build-defOperations 15

√

Uml2Vdm‘getDefaultExpression 5 51%
Uml2Vdm‘AddInstanceVarToClass 4 80%
Uml2Vdm‘build-instanceVariable 13 92%
Uml2Vdm‘extractUnionAssociation 1 96%
Uml2Vdm‘extractBinaryAssociation 2 95%

F.2. TRANSFORMING UML TO VDM 231

Name #Calls Coverage

Uml2Vdm‘extractProductAssociation 1
√

Uml2Vdm‘build-defInstanceVariables 15
√

Uml2Vdm‘getAssociationInstanceVars 19
√

Uml2Vdm‘extractInstanceVarsFromAssociations 7
√

Total Coverage 91%

232 APPENDIX F. MODEL COVERAGE

F.3 OML AST to VDM files printer

F.3.1 Proxy for printer (Oml2Vpp)

Provides a easy to use interface for printing a OML AST to source files. Connects the
Oml2Vpp visitor to the IO facility.
class Oml2Vpp
types

public String = char∗

operations
public

Save : String × IOmlDocument o→ ()
Save (fileName, doc) 4

(dcl visitor : Oml2VppVisitor := new Oml2VppVisitor ();
visitor .visitDocument(doc) ;
Util ‘SetFileName(fileName) ;
Util ‘PrintL(visitor .result)

)
end Oml2Vpp

Test Suite : vdm.tc
Class : Oml2Vpp

Name #Calls Coverage

Oml2Vpp‘Save 7
√

Total Coverage 100%

F.3. OML AST TO VDM FILES PRINTER 233

F.3.2 Visitor for OML which implements a printer for source files
(Oml2VppVisitor)

Implemtation of the OML source file printer.
class Oml2VppVisitor is subclass of OmlVisitor
types

String = char∗

values
private

nl : char∗ = "\n"
instance variables

public result : char∗ := [];
private lvl : N := 0;

operations
private

printNodeField : IOmlNode o→ ()
printNodeField (pNode) 4 pNode .

accept(self) ;
private

printBoolField : B o→ ()
printBoolField (pval) 4

result := if pval
then "true"
else "false";

private
printNatField : N o→ ()
printNatField (pval) 4

result := StdLib‘ToStringInt (pval);
private

printRealField : R o→ ()
printRealField (-) 4

error;
private

printCharField : char
o→ ()

printCharField (pval) 4

result := "’"y [pval] y "’";
private

printField : IOmlNode‘FieldValue o→ ()
printField (fld) 4

if is-B (fld)
then printBoolField(fld)

234 APPENDIX F. MODEL COVERAGE

elseif is-char (fld)
then printCharField(fld)
elseif is-N (fld)
then printNatField(fld)
elseif is-R (fld)
then printRealField(fld)
elseif isofclass (IOmlNode, fld)
then printNodeField(fld)
else printStringField(fld) ;

private
printStringField : char∗

o→ ()
printStringField (str) 4

result := "\""y str y "\"";
private

printSeqofField : IOmlNode‘FieldValue∗ o→ ()
printSeqofField (pval) 4

(dcl str : char∗ := "",
cnt : N := len pval ;

while cnt > 0
do (printField(pval (len pval − cnt + 1)) ;

str := str y result ;
cnt := cnt − 1

);
result := str

);
public

visitNode : IOmlNode o→ ()
visitNode (pNode) 4 pNode .

accept(self) ;
public

visitDocument : IOmlDocument o→ ()
visitDocument (pcmp) 4

(dcl str : char∗ := "–BEGIN FileName: "ypcmp.getFilename ()y

nl ;
if pcmp.hasSpecifications ()
then visitSpecifications(pcmp.getSpecifications ()) ;
result := stryresulty"–END FileName: "ypcmp.getFilename ()

);
public

F.3. OML AST TO VDM FILES PRINTER 235

visitSpecifications : IOmlSpecifications o→ ()
visitSpecifications (pcmp) 4

(dcl str : char∗ := nl ;
for node in pcmp.getClassList ()
do (printNodeField(node) ;

str := str y nl y result y nl
) ;

result := str
);

public
visitClass : IOmlClass o→ ()
visitClass (pcmp) 4

(dcl str : char∗ := "class "y pcmp.getIdentifier ();
if pcmp.hasInheritanceClause ()
then printNodeField(pcmp.getInheritanceClause ())
else result := "";
for db in pcmp.getClassBody ()
do (printNodeField(db) ;

str := str y nl y result
) ;

result := str y nl y "end "y pcmp.getIdentifier ()
);

public
visitInheritanceClause : IOmlInheritanceClause o→ ()
visitInheritanceClause (pcmp) 4

(dcl str : char∗ := " is subclass of ",
list : String∗ := pcmp.getIdentifierList (),
length : N := len list ,
i : N := 1;

while i ≤ length
do (str := str y list (i);

i := i + 1;
if i ≤ length
then str := str y " ,"

) ;
result := str y nl

);
public

visitValueDefinitions : IOmlValueDefinitions o→ ()
visitValueDefinitions (pcmp) 4

(dcl str : char∗ := nl y "values"y nl ;

236 APPENDIX F. MODEL COVERAGE

for db in pcmp.getValueList ()
do (printNodeField(db) ;

str := str y result y nl
) ;

if len pcmp.getValueList () = 0
then result := ""

else result := str
);

public
visitValueDefinition : IOmlValueDefinition o→ ()
visitValueDefinition (pcmp) 4

(dcl str : char∗;
printNodeField(pcmp.getAccess ()) ;
str := result ;
printNodeField(pcmp.getShape ()) ;
str := str y result y ";"y nl ;
result := str

);
public

visitAccessDefinition : IOmlAccessDefinition o→ ()
visitAccessDefinition (pcmp) 4

(dcl str : char∗ := "";
if pcmp.getStaticAccess ()
then str := " static ";
printNodeField(pcmp.getScope ()) ;
str := str y result y " ";
result := str

);
public

visitScope : IOmlScope o→ ()
visitScope (pNode) 4

(cases pNode.getValue ():
(OmlScopeQuotes‘IQPUBLIC)→ result := "public",
(OmlScopeQuotes‘IQPRIVATE),
(OmlScopeQuotes‘IQDEFAULT)→ result := "private",
(OmlScopeQuotes‘IQPROTECTED)→ result := "protected",
others→ error

end
);

public

F.3. OML AST TO VDM FILES PRINTER 237

visitValueShape : IOmlValueShape o→ ()
visitValueShape (pcmp) 4

(dcl str : char∗;
printNodeField(pcmp.getPattern ()) ;
str := result y " ";
if pcmp.hasType ()
then (printNodeField(pcmp.getType ()) ;

str := str y " : "y result y " "

)
else result := "";
printNodeField(pcmp.getExpression ()) ;
str := str y " = "y result y " ";
result := str

);
public

visitPattern : IOmlPattern o→ ()
visitPattern (pNode) 4 pNode .

accept(self) ;
public

visitExpression : IOmlExpression o→ ()
visitExpression (pNode) 4 pNode .

accept(self) ;
public

visitLiteral : IOmlLiteral o→ ()
visitLiteral (pNode) 4 pNode .

accept(self) ;
public

visitType : IOmlType o→ ()
visitType (pNode) 4 pNode .

accept(self) ;
public

visitPatternIdentifier : IOmlPatternIdentifier o→ ()
visitPatternIdentifier (pcmp) 4

(dcl str : char∗ := pcmp.getIdentifier () y " ";
result := str

);
public

238 APPENDIX F. MODEL COVERAGE

visitSymbolicLiteralExpression : IOmlSymbolicLiteralExpression o→
()

visitSymbolicLiteralExpression (pcmp) 4

(printNodeField(pcmp.getLiteral ())
);

public
visitTextLiteral : IOmlTextLiteral o→ ()
visitTextLiteral (pcmp) 4

(dcl str : char∗ := pcmp.getVal ();
result := "\""y str y "\""

);
public

visitSeq0Type : IOmlSeq0Type o→ ()
visitSeq0Type (pcmp) 4

(dcl str : char∗ := "seq of ";
printNodeField(pcmp.getType ()) ;
str := str y result ;
result := str

);
public

visitCharType : IOmlCharType o→ ()
visitCharType (-) 4

(dcl str : char∗ := "char";
result := str

);
public

visitInstanceVariableDefinitions : IOmlInstanceVariableDefinitions o→
()

visitInstanceVariableDefinitions (pcmp) 4

(dcl str : char∗ := nl y "instance variables"y nl y nl ;
for db in pcmp.getVariablesList ()
do (printNodeField(db) ;

str := str y result y nl
) ;

if len pcmp.getVariablesList () = 0
then result := ""

else result := str
);

public

F.3. OML AST TO VDM FILES PRINTER 239

visitInstanceVariable : IOmlInstanceVariable o→ ()
visitInstanceVariable (pcmp) 4

(dcl str : char∗ := "";
printNodeField(pcmp.getAccess ()) ;
str := str y result ;
printNodeField(pcmp.getAssignmentDefinition ()) ;
str := str y result ;
result := str

);
public

visitAssignmentDefinition : IOmlAssignmentDefinition o→ ()
visitAssignmentDefinition (pcmp) 4

(dcl str : char∗ := "";
str := str y pcmp.getIdentifier ();
printNodeField(pcmp.getType ()) ;
str := str y " : "y result ;
if pcmp.hasExpression ()
then (printNodeField(pcmp.getExpression ()) ;

str := str y " : = "

)
else result := "";
str := str y result y ";";
result := str

);
public

visitTypeName : IOmlTypeName o→ ()
visitTypeName (pcmp) 4

(printNodeField(pcmp.getName ())
);

public
visitName : IOmlName o→ ()
visitName (pcmp) 4

(dcl str : char∗ := "";
if pcmp.hasClassIdentifier ()
then str := str y pcmp.getClassIdentifier ();
str := str y pcmp.getIdentifier ();
result := str

);
public

240 APPENDIX F. MODEL COVERAGE

visitIntType : IOmlIntType o→ ()
visitIntType (-) 4

(dcl str : char∗ := "int";
result := str

);
public

visitNatType : IOmlNatType o→ ()
visitNatType (-) 4

(dcl str : char∗ := "nat";
result := str

);
public

visitNat1Type : IOmlNat1Type o→ ()
visitNat1Type (-) 4

(dcl str : char∗ := "nat1";
result := str

);
public

visitSeq1Type : IOmlSeq1Type o→ ()
visitSeq1Type (pcmp) 4

(dcl str : char∗ := "seq1 of ";
printNodeField(pcmp.getType ()) ;
str := str y result ;
result := str

);
public

visitRealType : IOmlRealType o→ ()
visitRealType (-) 4

(dcl str : char∗ := "real";
result := str

);
public

visitSetType : IOmlSetType o→ ()
visitSetType (pcmp) 4

(dcl str : char∗ := "set of ";
printNodeField(pcmp.getType ()) ;
str := str y result ;
result := str

);
public

F.3. OML AST TO VDM FILES PRINTER 241

visitTypeDefinitions : IOmlTypeDefinitions o→ ()
visitTypeDefinitions (pcmp) 4

(dcl str : char∗ := nl y "types"y nl y nl ;
for db in pcmp.getTypeList ()
do (printNodeField(db) ;

str := str y result y nl
) ;

result := str
);

public
visitTypeDefinition : IOmlTypeDefinition o→ ()
visitTypeDefinition (pcmp) 4

(dcl str : char∗ := "";
printNodeField(pcmp.getAccess ()) ;
str := str y result ;
printNodeField(pcmp.getShape ()) ;
str := str y result y ";";
result := str

);
public

visitSimpleType : IOmlSimpleType o→ ()
visitSimpleType (pcmp) 4

(dcl str : char∗ := pcmp.getIdentifier ();
printNodeField(pcmp.getType ()) ;
result := str y " = "y result

);
public

visitEmptyType : IOmlEmptyType o→ ()
visitEmptyType (-) 4

(dcl str : char∗ := "()";
result := str

);
public

visitNewExpression : IOmlNewExpression o→ ()
visitNewExpression (pcmp) 4

(dcl str : char∗ := "new ";
printNodeField(pcmp.getName ()) ;
str := str y result y "()";
result := str

);
public

242 APPENDIX F. MODEL COVERAGE

visitNumericLiteral : IOmlNumericLiteral o→ ()
visitNumericLiteral (pcmp) 4

(dcl str : char∗ := "";
printNatField(pcmp.getVal ()) ;
str := str y result ;
result := str

);
public

visitOperationDefinitions : IOmlOperationDefinitions o→ ()
visitOperationDefinitions (pcmp) 4

(dcl str : char∗ := nl y "operations"y nl y nl ;
for db in pcmp.getOperationList ()
do (printNodeField(db) ;

str := str y result y nl
) ;

if len pcmp.getOperationList () > 0
then result := str
else result := ""

);
public

visitOperationDefinition : IOmlOperationDefinition o→ ()
visitOperationDefinition (pcmp) 4

(dcl str : char∗ := "";
printNodeField(pcmp.getAccess ()) ;
str := str y result ;
printNodeField(pcmp.getShape ()) ;
str := str y result ;
result := str

);
public

visitExplicitOperation : IOmlExplicitOperation o→ ()
visitExplicitOperation (pcmp) 4

(dcl str : char∗ := pcmp.getIdentifier () y " : ";
printNodeField(pcmp.getType ()) ;
str := str y result ;
str := str y nl y pcmp.getIdentifier () y "(";
for db in pcmp.getParameterList ()

F.3. OML AST TO VDM FILES PRINTER 243

do (printNodeField(db) ;
str := str y result

);
str := str y ") == ";
printNodeField(pcmp.getBody ()) ;
str := str y result y ";"y nl ;
result := str

);
public

visitOperationType : IOmlOperationType o→ ()
visitOperationType (pcmp) 4

(dcl str : char∗ := "";
printNodeField(pcmp.getDomType ()) ;
str := str y result y " ==> ";
printNodeField(pcmp.getRngType ()) ;
str := str y result ;
result := str

);
public

visitOperationBody : IOmlOperationBody o→ ()
visitOperationBody (pcmp) 4

(dcl str : char∗ := "(";
if pcmp.hasStatement ()
then printNodeField(pcmp.getStatement ())
else result := "";
str := str y result ;
if pcmp.getNotYetSpecified ()
then str := str y "is not yet specified";
if pcmp.getSubclassResponsibility ()
then str := str y "sub class responsibility";
str := str y ")";
result := str

);
public

visitSkipStatement : IOmlSkipStatement o→ ()
visitSkipStatement (-) 4

(dcl str : char∗ := "skip";
result := str

);
public

244 APPENDIX F. MODEL COVERAGE

visitParameter : IOmlParameter o→ ()
visitParameter (pcmp) 4

(dcl str : char∗ := "";
for db in pcmp.getPatternList ()
do (printNodeField(db) ;

str := str y result y ", "

) ;
str := str (1, . . . , len str − 2);
result := str

);
public

visitFunctionDefinitions : IOmlFunctionDefinitions o→ ()
visitFunctionDefinitions (pcmp) 4

(dcl str : char∗ := nl y "functions"y nl y nl ;
for db in pcmp.getFunctionList ()
do (printNodeField(db) ;

str := str y result y nl
) ;

result := str
);

public
visitFunctionDefinition : IOmlFunctionDefinition o→ ()
visitFunctionDefinition (pcmp) 4

(dcl str : char∗ := "";
printNodeField(pcmp.getAccess ()) ;
str := str y result ;
printNodeField(pcmp.getShape ()) ;
str := str y result ;
result := str

);
public

visitExplicitFunction : IOmlExplicitFunction o→ ()
visitExplicitFunction (pcmp) 4

(dcl str : char∗ := pcmp.getIdentifier () y " : ";
for db in pcmp.getTypeVariableList ()

F.3. OML AST TO VDM FILES PRINTER 245

do (printNodeField(db) ;
str := str y result

) ;
printNodeField(pcmp.getType ()) ;
str := str y result ;
str := str y nl y pcmp.getIdentifier () y "(";
for db in pcmp.getParameterList ()
do (printNodeField(db) ;

str := str y result
) ;

str := str y ") == is not yet specified ;";
result := str

);
public

visitPartialFunctionType : IOmlPartialFunctionType o→ ()
visitPartialFunctionType (pcmp) 4

(dcl str : char∗ := "";
printNodeField(pcmp.getDomType ()) ;
str := str y result y " - > ";
printNodeField(pcmp.getRngType ()) ;
str := str y result ;
result := str

);
public

visitUnionType : IOmlUnionType o→ ()
visitUnionType (pcmp) 4

(dcl str : char∗ := "";
pcmp.getLhsType () .accept(self) ;
str := str y result ;
pcmp.getRhsType () .accept(self) ;
str := str y " | "y result ;
result := str

);
public

visitProductType : IOmlProductType o→ ()
visitProductType (pcmp) 4

(dcl str : char∗ := "";

246 APPENDIX F. MODEL COVERAGE

pcmp.getLhsType () .accept(self) ;
str := str y result ;
pcmp.getRhsType () .accept(self) ;
str := str y " ∗ "y result ;
result := str

);
public

visitTraceDefinitions : IOmlTraceDefinitions o→ ()
visitTraceDefinitions (pcmp) 4

(dcl str : char∗ := nl y "traces"y nl y nl ;
for db in pcmp.getTraces ()
do (printNodeField(db) ;

str := str y result y nl
) ;

result := str
);

public
visitNamedTrace : IOmlNamedTrace o→ ()
visitNamedTrace (pcmp) 4

(dcl str : char∗ := " ";
str := str y pcmp.getName () y " : ";
printNodeField(pcmp.getDefs ()) ;
str := str y result ;
result := str

);
public

visitTraceDefinition : IOmlTraceDefinition o→ ()
visitTraceDefinition (pNode) 4 pNode .

accept(self) ;
public

visitTraceDefinitionItem : IOmlTraceDefinitionItem o→ ()
visitTraceDefinitionItem (pcmp) 4

(dcl str : char∗ := "";
printSeqofField(pcmp.getBind ()) ;
str := str y result ;
printNodeField(pcmp.getTest ()) ;
str := str y result ;
if pcmp.hasRegexpr ()
then printNodeField(pcmp.getRegexpr ())

F.3. OML AST TO VDM FILES PRINTER 247

else result := "";
str := str y result ;
result := str

);
public

visitTraceBinding : IOmlTraceBinding o→ ()
visitTraceBinding (pNode) 4 pNode .

accept(self) ;
public

visitTraceLetBinding : IOmlTraceLetBinding o→ ()
visitTraceLetBinding (pcmp) 4

(dcl str : char∗ := "";
printSeqofField(pcmp.getDefinitionList ()) ;
str := str y result ;
result := str

);
public

visitTraceBracketedDefinition : IOmlTraceBracketedDefinition o→ ()
visitTraceBracketedDefinition (pcmp) 4

(dcl str : char∗ := "(";
printNodeField(pcmp.getDefinition ()) ;
str := str y result y ")";
result := str

);
public

visitTraceMethodApply : IOmlTraceMethodApply o→ ()
visitTraceMethodApply (pcmp) 4

(dcl str : char∗ := "";
str := str y pcmp.getVariableName () y ".";
str := str y pcmp.getMethodName () y "(";
printSeqofField(pcmp.getArgs ()) ;
str := str y result y ")";
result := str

);
public

visitTraceCoreDefinition : IOmlTraceCoreDefinition o→ ()
visitTraceCoreDefinition (pNode) 4 pNode .

accept(self) ;
public

248 APPENDIX F. MODEL COVERAGE

visitTraceRepeatPattern : IOmlTraceRepeatPattern o→ ()
visitTraceRepeatPattern (pNode) 4 pNode .

accept(self) ;
public

visitTraceZeroOrMore : IOmlTraceZeroOrMore o→ ()
visitTraceZeroOrMore (-) 4

(dcl str : char∗ := " ∗ ";
result := str

);
public

visitTraceOneOrMore : IOmlTraceOneOrMore o→ ()
visitTraceOneOrMore (-) 4

(dcl str : char∗ := "+ ";
result := str

);
public

visitTraceZeroOrOne : IOmlTraceZeroOrOne o→ ()
visitTraceZeroOrOne (-) 4

(dcl str : char∗ := "?";
result := str

);
public

visitTraceRange : IOmlTraceRange o→ ()
visitTraceRange (pcmp) 4

(dcl str : char∗ := "{";
printNodeField(pcmp.getLower ()) ;
str := str y result ;
if pcmp.hasUpper ()
then (printNodeField(pcmp.getUpper ()) ;

str := str y ","y result
) ;

str := str y "}";
result := str

);
public

visitTraceChoiceDefinition : IOmlTraceChoiceDefinition o→ ()
visitTraceChoiceDefinition (pcmp) 4

(dcl str : char∗ := "",
count : N := 1;

for db in pcmp.getDefs ()

F.3. OML AST TO VDM FILES PRINTER 249

do (printNodeField(db) ;
if len pcmp.getDefs () = count
then str := str y result
else str := str y result y " | ";
count := count + 1

);
result := str

);
public

visitTraceSequenceDefinition : IOmlTraceSequenceDefinition o→ ()
visitTraceSequenceDefinition (pcmp) 4

(dcl str : char∗ := "",
count : N := 1;

for db in pcmp.getDefs ()
do (printNodeField(db) ;

if len pcmp.getDefs () = count
then str := str y result
else str := str y result y " ; ";
count := count + 1

);
result := str

)
end Oml2VppVisitor

Test Suite : vdm.tc
Class : Oml2VppVisitor

Name #Calls Coverage

Oml2VppVisitor‘visitName 9 70%
Oml2VppVisitor‘visitNode 0 0%
Oml2VppVisitor‘visitType 0 0%
Oml2VppVisitor‘printField 0 0%
Oml2VppVisitor‘visitClass 15 89%
Oml2VppVisitor‘visitScope 23 93%
Oml2VppVisitor‘visitIntType 7

√

Oml2VppVisitor‘visitLiteral 0 0%
Oml2VppVisitor‘visitNatType 0 0%
Oml2VppVisitor‘visitPattern 0 0%
Oml2VppVisitor‘visitSetType 0 0%
Oml2VppVisitor‘printNatField 5

√

Oml2VppVisitor‘visitCharType 4
√

Oml2VppVisitor‘visitDocument 7
√

250 APPENDIX F. MODEL COVERAGE

Name #Calls Coverage

Oml2VppVisitor‘visitNat1Type 0 0%
Oml2VppVisitor‘visitRealType 1

√

Oml2VppVisitor‘visitSeq0Type 0 0%
Oml2VppVisitor‘visitSeq1Type 0 0%
Oml2VppVisitor‘visitTypeName 9

√

Oml2VppVisitor‘printBoolField 0 0%
Oml2VppVisitor‘printCharField 0 0%
Oml2VppVisitor‘printNodeField 251

√

Oml2VppVisitor‘printRealField 0 0%
Oml2VppVisitor‘visitEmptyType 10

√

Oml2VppVisitor‘visitParameter 0 0%
Oml2VppVisitor‘visitUnionType 1

√

Oml2VppVisitor‘printSeqofField 14 35%
Oml2VppVisitor‘visitExpression 0 0%
Oml2VppVisitor‘visitNamedTrace 2

√

Oml2VppVisitor‘visitSimpleType 0 0%
Oml2VppVisitor‘visitTraceRange 1

√

Oml2VppVisitor‘visitValueShape 1 95%
Oml2VppVisitor‘printStringField 0 0%
Oml2VppVisitor‘visitProductType 2

√

Oml2VppVisitor‘visitTextLiteral 2
√

Oml2VppVisitor‘visitTraceBinding 0 0%
Oml2VppVisitor‘visitNewExpression 0 0%
Oml2VppVisitor‘visitOperationBody 5 73%
Oml2VppVisitor‘visitOperationType 5

√

Oml2VppVisitor‘visitSkipStatement 5
√

Oml2VppVisitor‘visitNumericLiteral 5
√

Oml2VppVisitor‘visitSpecifications 7
√

Oml2VppVisitor‘visitTraceOneOrMore 1
√

Oml2VppVisitor‘visitTraceZeroOrOne 0 0%
Oml2VppVisitor‘visitTypeDefinition 0 0%
Oml2VppVisitor‘visitTraceDefinition 0 0%
Oml2VppVisitor‘visitTraceLetBinding 0 0%
Oml2VppVisitor‘visitTraceZeroOrMore 0 0%
Oml2VppVisitor‘visitTypeDefinitions 0 0%
Oml2VppVisitor‘visitValueDefinition 1

√

Oml2VppVisitor‘visitAccessDefinition 23 90%
Oml2VppVisitor‘visitExplicitFunction 0 0%
Oml2VppVisitor‘visitInstanceVariable 17

√

F.3. OML AST TO VDM FILES PRINTER 251

Name #Calls Coverage

Oml2VppVisitor‘visitTraceDefinitions 2
√

Oml2VppVisitor‘visitTraceMethodApply 7
√

Oml2VppVisitor‘visitValueDefinitions 15
√

Oml2VppVisitor‘visitExplicitOperation 5 86%
Oml2VppVisitor‘visitInheritanceClause 0 0%
Oml2VppVisitor‘visitPatternIdentifier 1

√

Oml2VppVisitor‘visitFunctionDefinition 0 0%
Oml2VppVisitor‘visitTraceRepeatPattern 0 0%
Oml2VppVisitor‘visitFunctionDefinitions 0 0%
Oml2VppVisitor‘visitOperationDefinition 5

√

Oml2VppVisitor‘visitPartialFunctionType 0 0%
Oml2VppVisitor‘visitTraceCoreDefinition 0 0%
Oml2VppVisitor‘visitTraceDefinitionItem 7

√

Oml2VppVisitor‘visitAssignmentDefinition 17
√

Oml2VppVisitor‘visitOperationDefinitions 15
√

Oml2VppVisitor‘visitTraceChoiceDefinition 3
√

Oml2VppVisitor‘visitTraceSequenceDefinition 7
√

Oml2VppVisitor‘visitTraceBracketedDefinition 0 0%
Oml2VppVisitor‘visitSymbolicLiteralExpression 5

√

Oml2VppVisitor‘visitInstanceVariableDefinitions 19
√

Total Coverage 63%

Appendix G

OML AST

In this appendix the OML AST is listed.

--

-- OVERTURE VDM++ ABSTRACT SYNTAX DEFINITION

--

-- $Id: overture.ast,v 1.4 2008/05/27 09:52:42 mave Exp $

--

%prefix Oml;

%package org.overturetool.ast;

%directory "c:\COMU\buildOml";

%top Specifications Expression;

Specifications ::

class_list : seq of Class;

Class ::

identifier : Identifier

generic_types: seq of Type

inheritance_clause : [InheritanceClause]

class_body : seq of DefinitionBlock

system_spec : bool;

InheritanceClause ::

identifier_list : seq of Identifier;

DefinitionBlock =

TypeDefinitions |

ValueDefinitions |

FunctionDefinitions |

253

254 APPENDIX G. OML AST

OperationDefinitions |

InstanceVariableDefinitions |

SynchronizationDefinitions |

ThreadDefinition |

TraceDefinitions;

---- TYPE DEFINITIONS

TypeDefinitions ::

type_list : seq of TypeDefinition;

TypeDefinition ::

access : AccessDefinition

shape : TypeShape;

AccessDefinition ::

async_access : bool
static_access : bool
scope : Scope;

Scope =

<PUBLIC> | <PRIVATE> | <PROTECTED> | <DEFAULT>;

TypeShape =

SimpleType | ComplexType;

SimpleType ::

identifier : Identifier

type : Type

invariant : [Invariant];

ComplexType ::

identifier : Identifier

field_list : seq of Field

invariant : [Invariant];

Type =

BracketedType |

BoolType |

NatType |

Nat1Type |

IntType |

RatType |

RealType |

CharType |

255

TokenType |

QuoteType |

CompositeType |

UnionType |

ProductType |

OptionalType |

SetType |

Seq0Type |

Seq1Type |

GeneralMapType |

InjectiveMapType |

PartialFunctionType |

TotalFunctionType |

OperationType |

EmptyType |

TypeName |

TypeVariable |

ClassTypeInstantiation; -- added for Thomas Christensen

Invariant ::

pattern : Pattern

expression : Expression;

BracketedType ::

type : Type;

BoolType :: ;

NatType :: ;

Nat1Type :: ;

IntType :: ;

RatType :: ;

RealType :: ;

CharType :: ;

TokenType :: ;

QuoteType ::

quote_literal : QuoteLiteral;

CompositeType ::

identifier : Identifier

256 APPENDIX G. OML AST

field_list : seq of Field;

Field ::

identifier : [seq of char]
type : Type

ignore : bool;

UnionType ::

lhs_type : Type

rhs_type : Type;

ProductType ::

lhs_type : Type

rhs_type : Type;

OptionalType ::

type : Type;

SetType ::

type : Type;

Seq0Type ::

type : Type;

Seq1Type ::

type : Type;

GeneralMapType ::

dom_type : Type

rng_type : Type;

InjectiveMapType ::

dom_type : Type

rng_type : Type;

PartialFunctionType ::

dom_type : Type

rng_type : Type;

TotalFunctionType ::

dom_type : Type

rng_type : Type;

OperationType ::

dom_type : Type

rng_type : Type;

257

EmptyType ::;

TypeName ::

name : Name;

TypeVariable ::

identifier : Identifier;

ClassTypeInstantiation :: -- added for Thomas Christensen

name : Name

generic_types : seq of Type;

--- VALUE DEFINITIONS

ValueDefinitions ::

value_list : seq of ValueDefinition;

ValueDefinition ::

access : AccessDefinition

shape : ValueShape;

ValueShape ::

pattern : Pattern

type : [Type]

expression : Expression;

--- FUNCTION DEFINITIONS

FunctionDefinitions ::

function_list : seq of FunctionDefinition;

FunctionDefinition ::

access : AccessDefinition

shape : FunctionShape;

FunctionShape =

ExplicitFunction |

ImplicitFunction |

ExtendedExplicitFunction |

TypelessExplicitFunction; -- added for Thomas Christensen

ExplicitFunction ::

identifier : Identifier

258 APPENDIX G. OML AST

type_variable_list : seq of TypeVariable

type : Type

parameter_list : seq of Parameter

body : FunctionBody

trailer : FunctionTrailer;

Parameter ::

pattern_list : seq of Pattern;

ImplicitFunction ::

identifier : Identifier

type_variable_list : seq of TypeVariable

pattern_type_pair_list : seq of PatternTypePair

identifier_type_pair_list : seq of IdentifierTypePair

trailer : FunctionTrailer;

PatternTypePair ::

pattern_list : seq of Pattern

type : Type;

IdentifierTypePair ::

identifier : Identifier

type : Type;

ExtendedExplicitFunction ::

identifier : Identifier

type_variable_list : seq of TypeVariable

pattern_type_pair_list : seq of PatternTypePair

identifier_type_pair_list : seq of IdentifierTypePair

body : FunctionBody

trailer : FunctionTrailer;

TypelessExplicitFunction :: -- added for Thomas Christensen

identifier : Identifier

parameter_list : seq of Parameter

body : FunctionBody

trailer : FunctionTrailer;

FunctionBody ::

function_body : [Expression]

not_yet_specified : bool
subclass_responsibility : bool;

FunctionTrailer ::

pre_expression : [Expression]

post_expression : [Expression];

259

--- OPERATION DEFINITIONS

OperationDefinitions ::

operation_list : seq of OperationDefinition;

OperationDefinition ::

access : AccessDefinition

shape : OperationShape;

OperationShape =

ExplicitOperation |

ImplicitOperation |

ExtendedExplicitOperation;

ExplicitOperation ::

identifier : Identifier

type : Type

parameter_list : seq of Pattern

body : OperationBody

trailer : OperationTrailer;

ImplicitOperation ::

identifier : Identifier

pattern_type_pair_list : seq of PatternTypePair

identifier_type_pair_list : seq of IdentifierTypePair

trailer : OperationTrailer;

ExtendedExplicitOperation ::

identifier : Identifier

pattern_type_pair_list : seq of PatternTypePair

identifier_type_pair_list : seq of IdentifierTypePair

body : OperationBody

trailer : OperationTrailer;

OperationBody ::

statement : [Statement]

not_yet_specified : bool
subclass_responsibility : bool;

OperationTrailer ::

externals : [Externals]

pre_expression : [Expression]

post_expression : [Expression]

exceptions : [Exceptions];

260 APPENDIX G. OML AST

Externals ::

ext_list : seq of VarInformation;

VarInformation ::

mode : Mode

name_list : seq of Name

type : [Type];

Mode =

<RD> | <WR>;

Exceptions ::

error_list : seq of Error;

Error ::

identifier : Identifier

lhs : Expression

rhs : Expression;

--- INSTANCE VARIABLES

InstanceVariableDefinitions ::

variables_list : seq of InstanceVariableShape;

InstanceVariableShape =

InstanceVariable |

InstanceVariableInvariant;

InstanceVariable ::

access : AccessDefinition

assignment_definition : AssignmentDefinition;

InstanceVariableInvariant ::

invariant : Expression;

--- SYNCHRONIZATION

SynchronizationDefinitions ::

sync_list : seq of SyncPredicate;

SyncPredicate =

PermissionPredicate |

MutexPredicate |

261

MutexAllPredicate ;

PermissionPredicate ::

name : Name

expression : Expression;

MutexPredicate ::

name_list : seq of Name;

MutexAllPredicate ::;

--- THREAD DEFINITIONS

ThreadDefinition ::

thread_specification : [ThreadSpecification];

ThreadSpecification =

PeriodicThread |

SporadicThread |

ProcedureThread ;

PeriodicThread ::

args : seq of Expression

name : Name;

SporadicThread :: -- added for Marcel Verhoef

args : seq of Expression

name : Name;

ProcedureThread ::

statement : Statement;

--- TRACE DEFINITIONS (added for Adriana Sucena)

TraceDefinitions ::

traces : seq of NamedTrace;

NamedTrace ::

name : seq of char
defs : TraceDefinition;

TraceDefinition =

TraceDefinitionItem |

262 APPENDIX G. OML AST

TraceSequenceDefinition |

TraceChoiceDefinition;

TraceSequenceDefinition ::

defs : seq of TraceDefinition;

TraceChoiceDefinition ::

defs : seq of TraceDefinition;

TraceDefinitionItem ::

bind : seq of TraceBinding

test : TraceCoreDefinition

regexpr : [TraceRepeatPattern];

TraceBinding =

TraceLetBinding |

TraceLetBeBinding;

TraceLetBinding ::

definition_list : seq of ValueShape;

TraceLetBeBinding ::

bind : Bind

best : [Expression];

TraceCoreDefinition =

TraceMethodApply |

TraceBracketedDefinition;

TraceMethodApply ::

variable_name : Identifier

method_name : Identifier

args : seq of Expression;

TraceBracketedDefinition ::

definition : TraceDefinition;

TraceRepeatPattern =

TraceZeroOrMore |

TraceOneOrMore |

TraceZeroOrOne |

TraceRange;

TraceZeroOrMore :: ;

TraceOneOrMore :: ;

263

TraceZeroOrOne :: ;

TraceRange ::

lower : NumericLiteral

upper : [NumericLiteral];

--- EXPRESSIONS

Expression =

BracketedExpression |

LetExpression |

LetBeExpression |

DefExpression |

IfExpression |

CasesExpression |

UnaryExpression |

BinaryExpression |

ForAllExpression |

ExistsExpression |

ExistsUniqueExpression |

IotaExpression |

TokenExpression |

SetEnumeration |

SetComprehension |

SetRangeExpression |

SequenceEnumeration |

SequenceComprehension |

SubsequenceExpression |

MapEnumeration |

MapComprehension |

TupleConstructor |

RecordConstructor |

MuExpression |

ApplyExpression |

FieldSelect |

FunctionTypeSelect |

FunctionTypeInstantiation |

LambdaExpression |

NewExpression |

SelfExpression |

ThreadIdExpression |

TimeExpression |

IsExpression |

UndefinedExpression |

PreconditionExpression |

264 APPENDIX G. OML AST

IsofbaseclassExpression |

IsofclassExpression |

SamebaseclassExpression |

SameclassExpression |

ReqExpression |

ActExpression |

FinExpression |

ActiveExpression |

WaitingExpression |

Name |

OldName |

SymbolicLiteralExpression;

BracketedExpression ::

expression : Expression;

LetExpression ::

definition_list : seq of ValueShape

expression : Expression;

LetBeExpression ::

bind : Bind

best : [Expression]

expression : Expression;

DefExpression ::

pattern_bind_list : seq of PatternBindExpression

expression : Expression;

PatternBindExpression ::

pattern_bind : PatternBind

expression : Expression;

IfExpression ::

if_expression : Expression

then_expression : Expression

elseif_expression_list : seq of ElseIfExpression

else_expression : Expression;

ElseIfExpression ::

elseif_expression : Expression

then_expression : Expression;

CasesExpression ::

match_expression : Expression

alternative_list : seq of CasesExpressionAlternative

others_expression : [Expression];

265

CasesExpressionAlternative ::

pattern_list : seq of Pattern

expression : Expression;

UnaryExpression ::

operator : UnaryOperator

expression : Expression;

UnaryOperator =

<PLUS> |

<MINUS> |

<ABS> |

<FLOOR> |

<NOT> |

<CARD> |

<POWER> |

<DUNION> |

<DINTER> |

<HD> |

<TL> |

<LEN> |

<ELEMS> |

<INDS> |

<DCONC> |

<DOM> |

<RNG> |

<DMERGE> |

<INVERSE>;

BinaryExpression ::

lhs_expression : Expression

operator : BinaryOperator

rhs_expression : Expression;

BinaryOperator =

<PLUS> |

<MINUS> |

<MULTIPLY> |

<DIVIDE> |

<DIV> |

<REM> |

<MOD> |

<LT> |

<LE> |

<GT> |

<GE> |

266 APPENDIX G. OML AST

<EQ> |

<NE> |

<OR> |

<AND> |

<IMPLY> |

<EQUIV> |

<INSET> |

<NOTINSET> |

<SUBSET> |

<PSUBSET> |

<UNION> |

<DIFFERENCE> |

<INTER> |

<CONC> |

<MODIFY> |

<MUNION> |

<MAPDOMRESTO> |

<MAPDOMRESBY> |

<MAPRNGRESTO> |

<MAPRNGRESBY> |

<COMP> |

<ITERATE> |

<TUPSEL> ;

ForAllExpression ::

bind_list : seq of Bind

expression : Expression;

ExistsExpression ::

bind_list : seq of Bind

expression : Expression;

ExistsUniqueExpression ::

bind : Bind

expression : Expression;

IotaExpression ::

bind : Bind

expression : Expression;

TokenExpression ::

expression : Expression;

SetEnumeration ::

expression_list : seq of Expression;

SetComprehension ::

267

expression : Expression

bind_list : seq of Bind

guard : [Expression];

SetRangeExpression ::

lower : Expression

upper : Expression;

SequenceEnumeration ::

expression_list : seq of Expression;

SequenceComprehension ::

expression : Expression

set_bind : SetBind

guard : [Expression];

SubsequenceExpression ::

expression : Expression

lower : Expression

upper : Expression;

MapEnumeration ::

maplet_list : seq of Maplet;

Maplet ::

dom_expression : Expression

rng_expression : Expression;

MapComprehension ::

expression : Maplet

bind_list : seq of Bind

guard : [Expression];

TupleConstructor ::

expression_list : seq of Expression;

RecordConstructor ::

name : Name

expression_list : seq of Expression;

MuExpression ::

expression : Expression

modifier_list : seq of RecordModifier;

RecordModifier ::

identifier : Identifier

expression : Expression;

268 APPENDIX G. OML AST

ApplyExpression ::

expression : Expression

expression_list : seq of Expression;

FieldSelect ::

expression : Expression

name : Name;

FunctionTypeSelect ::

expression : Expression

function_type_instantiation : FunctionTypeInstantiation;

FunctionTypeInstantiation ::

name : Name

type_list : seq of Type;

LambdaExpression ::

type_bind_list : seq of TypeBind

expression : Expression;

NewExpression ::

name : Name

generic_types : seq of Type -- added for Thomas Christensen

expression_list : seq of Expression;

SelfExpression :: ;

ThreadIdExpression :: ;

TimeExpression :: ;

IsExpression ::

type : Type

expression : Expression;

UndefinedExpression ::;

PreconditionExpression ::

expression_list : seq of Expression;

IsofbaseclassExpression ::

name : Name

expression : Expression;

IsofclassExpression ::

name : Name

269

expression : Expression;

SamebaseclassExpression ::

lhs_expression : Expression

rhs_expression : Expression;

SameclassExpression ::

lhs_expression : Expression

rhs_expression : Expression;

ReqExpression ::

name_list : seq of Name;

ActExpression ::

name_list : seq of Name;

FinExpression ::

name_list : seq of Name;

ActiveExpression ::

name_list : seq of Name;

WaitingExpression ::

name_list : seq of Name;

Name ::

class_identifier : [Identifier]

identifier : Identifier;

OldName ::

identifier : Identifier;

SymbolicLiteralExpression ::

literal : Literal;

--- STATEMENTS

Statement =

LetStatement |

LetBeStatement |

DefStatement |

BlockStatement |

DclStatement |

AssignStatement |

AtomicStatement |

270 APPENDIX G. OML AST

IfStatement |

CasesStatement |

SequenceForLoop |

SetForLoop |

IndexForLoop |

WhileLoop |

NondeterministicStatement |

CallStatement |

ReturnStatement |

SpecificationStatement |

StartStatement |

DurationStatement |

CyclesStatement |

AlwaysStatement |

TrapStatement |

RecursiveTrapStatement |

ExitStatement |

ErrorStatement |

SkipStatement ;

LetStatement ::

definition_list : seq of ValueShape

statement : Statement;

LetBeStatement ::

bind : Bind

best : [Expression]

statement : Statement;

DefStatement ::

definition_list : seq of EqualsDefinition

statement : Statement;

EqualsDefinition ::

pattern_bind : PatternBind

expression : Expression;

BlockStatement ::

dcl_statement_list : seq of DclStatement

statement_list : seq of Statement;

DclStatement ::

definition_list : seq of AssignmentDefinition;

AssignmentDefinition ::

identifier : Identifier

type : Type

271

expression : [Expression];

AssignStatement ::

state_designator : StateDesignator

expression : Expression;

AtomicStatement ::

assignment_list : seq of AssignStatement;

StateDesignator =

StateDesignatorName |

FieldReference |

MapOrSequenceReference;

StateDesignatorName ::

name : Name;

FieldReference ::

state_designator : StateDesignator

identifier : Identifier;

MapOrSequenceReference ::

state_designator : StateDesignator

expression : Expression;

IfStatement ::

expression : Expression

then_statement : Statement

elseif_statement : seq of ElseIfStatement

else_statement : [Statement];

ElseIfStatement ::

expression : Expression

statement : Statement;

CasesStatement ::

match_expression : Expression

alternative_list : seq of CasesStatementAlternative

others_statement : [Statement];

CasesStatementAlternative ::

pattern_list : seq of Pattern

statement : Statement;

SequenceForLoop ::

pattern_bind : PatternBind

in_reverse : bool

272 APPENDIX G. OML AST

expression : Expression

statement : Statement;

SetForLoop ::

pattern : Pattern

expression : Expression

statement : Statement;

IndexForLoop ::

identifier : Identifier

init_expression : Expression

limit_expression : Expression

by_expression : [Expression]

statement : Statement;

WhileLoop ::

expression : Expression

statement : Statement;

NondeterministicStatement ::

statement_list : seq of Statement;

CallStatement ::

object_designator : [ObjectDesignator]

name : Name

expression_list : seq of Expression;

ObjectDesignator =

ObjectDesignatorExpression |

ObjectFieldReference |

ObjectApply;

ObjectDesignatorExpression ::

expression : Expression;

ObjectFieldReference ::

object_designator : ObjectDesignator

name : Name;

ObjectApply ::

object_designator : ObjectDesignator

expression_list : seq of Expression;

ReturnStatement ::

expression : [Expression];

SpecificationStatement ::

273

externals : [Externals]

pre_expression : [Expression]

post_expression : Expression

exceptions : [Exceptions];

StartStatement ::

expression : Expression;

DurationStatement ::

duration_expression : seq of Expression

statement : Statement;

CyclesStatement ::

cycles_expression : seq of Expression

statement : Statement;

AlwaysStatement ::

always_part : Statement

in_part : Statement;

TrapStatement ::

pattern_bind : PatternBind

with_part : Statement

in_part : Statement;

RecursiveTrapStatement ::

trap_list : seq of TrapDefinition

in_part : Statement;

TrapDefinition ::

pattern_bind : PatternBind

statement : Statement;

ExitStatement ::

expression : [Expression];

ErrorStatement ::;

SkipStatement ::;

--- PATTERNS

Pattern =

DontCarePattern |

PatternIdentifier |

274 APPENDIX G. OML AST

MatchValue |

SymbolicLiteralPattern |

SetEnumPattern |

SetUnionPattern |

SeqEnumPattern |

SeqConcPattern |

TuplePattern |

RecordPattern;

DontCarePattern ::;

PatternIdentifier ::

identifier : Identifier;

MatchValue ::

expression : Expression;

SymbolicLiteralPattern ::

literal : Literal;

SetEnumPattern ::

pattern_list : seq of Pattern;

SetUnionPattern ::

lhs_pattern : Pattern

rhs_pattern : Pattern;

SeqEnumPattern ::

pattern_list : seq of Pattern;

SeqConcPattern ::

lhs_pattern : Pattern

rhs_pattern : Pattern;

TuplePattern ::

pattern_list : seq of Pattern;

RecordPattern ::

name : Name

pattern_list : seq of Pattern;

--- BINDINGS

PatternBind =

Pattern |

275

Bind;

Bind =

SetBind |

TypeBind;

-- SetBind is used for both single and multiple binds

SetBind ::

pattern : seq of Pattern

expression : Expression;

-- TypeBind is used for both single and multiple binds

TypeBind ::

pattern : seq of Pattern

type : Type;

--- LEXICAL ELEMENTS

Literal =

NumericLiteral |

RealLiteral |

BooleanLiteral |

NilLiteral |

CharacterLiteral |

TextLiteral |

QuoteLiteral;

NumericLiteral ::

val : nat;

RealLiteral ::

val : real;

BooleanLiteral ::

val : bool;

NilLiteral ::;

CharacterLiteral ::

val : char;

TextLiteral ::

val : seq of char;

276 APPENDIX G. OML AST

QuoteLiteral ::

val : seq of char;

Identifier = seq of char

Listing G.1: OML AST

Appendix H

UML AST

In this appendix the UML AST is listed.

-- UML ABSTRACT SYNTAX DEFINITION

--

-- File: UML.ast

-- Created: 09 - 2008

-- Authour: Kenneth Lausdahl

-- and

-- Hans Kristian Lintrup

-- Description: Subpart of UML represented as

-- an AST. Contains the UML static structure

--

%prefix Uml;

%package org.overturetool.uml.ast;

%directory "C:\COMU\build";

%top Model;

Model ::

name : String

definitions : set of ModelElement;

ModelElement = Class | Association |

Constraint | Collaboration;

Class ::

name : String

classBody : set of DefinitionBlock

isAbstract : bool
superClass : seq of ClassNameType

277

278 APPENDIX H. UML AST

visibility : VisibilityKind

isStatic : bool
isActive : bool
templatesignature : [TemplateSignature];

VisibilityKind = <PUBLIC> | <PRIVATE> | <PROTECTED> ;

TemplateSignature ::

templateParameters : set of TemplateParameter;

TemplateParameter ::

name : String;

DefinitionBlock =

OwnedOperations | OwnedProperties | NestedClassifiers;

-- Operation

OwnedOperations ::

operationList :set of Operation;

Operation ::

name : String

visibility : VisibilityKind

multiplicity : MultiplicityElement --aka return type

isQuery : bool
type : [Type] --aka return type

isStatic : bool
ownedParameters : [Parameters];

Parameters ::

parameterList : seq of Parameter;

Parameter ::

name : String

type : Type

multiplicity : MultiplicityElement

default : String

direction : ParameterDirectionKind;

ParameterDirectionKind = <IN> | <INOUT> | <OUT> | <RETURN>;

MultiplicityElement::

isOrdered : bool
isUnique : bool
lower : nat

279

upper : [nat];

-- Property

OwnedProperties ::

propetityList : set of Property;

Property ::

name : String

visibility : VisibilityKind

multiplicity : [MultiplicityElement]

type : Type

isReadOnly : [bool]
default : [ValueSpecification]

isComposite : bool
isDerived : [bool]
isStatic : [bool]
ownerClass : String

qualifier : [Type];

-- Types

NestedClassifiers ::

typeList : set of Type;

Type =

BoolType |

IntegerType |

StringType |

UnlimitedNatural |

VoidType |

CharType |

ClassNameType;

BoolType ::;

IntegerType ::;

StringType ::;

UnlimitedNatural ::;

VoidType :: ;

CharType :: ;

ClassNameType ::

name : String;

280 APPENDIX H. UML AST

-- Association

Association ::

ownedEnds : set of Property

ownedNavigableEnds : set of Property

name : [String]

id : Id;

-- Constraint

Constraint ::

constraintElements : set of Id

specification : ValueSpecification;

ValueSpecification = LiteralString | LiteralInteger;

-- Diagrams

Collaboration :: -- Unknown in superstructure

ownedBehavior : set of Interaction;

Interaction ::

name : String

lifeLines : set of LifeLine

fragments : set of InteractionFragment

messages : seq of Message;

LifeLine ::

name : String

represents : [Type]; -- ConnectableElement - TypedElement - Class

--coveredBy : set of InteractionFragment;

InteractionFragment = OccurrenceSpecification |

InteractionOperand |

CombinedFragment |

ExecutionSpecification;

OccurrenceSpecification = Mos; -- Mos = MessageOccurrenceSpecification

ExecutionSpecification = Bes; -- Bes = BehaviorExecutionSpecification

Mos ::

name : String

message : [Message]

281

covered : LifeLine

event : [CallEvent];

CallEvent ::

operation : Operation;

Bes ::

name : String

startOs : OccurrenceSpecification

finishOs : OccurrenceSpecification

covered : set of LifeLine;

CombinedFragment ::

name : String

interactionOperator : InteractionOperatorKind

operand : seq of InteractionOperand --seq1

covered : set of LifeLine;

InteractionOperatorKind = <ALT> | <LOOP>;

InteractionOperand ::

name : String

fragments: seq of InteractionFragment

covered : set of Mos --LifeLine

guard : [InteractionConstraint];

--inv io == forall cf in set elems io.fragments & is_CombinedFragment(cf)

-- and forall mos in set io.covered

-- & forall childMos in set dunion {op.covered | op in set elems cf.operand}

-- & mos <> childMos;

InteractionConstraint ::

minint : [ValueSpecification]

maxint : [ValueSpecification];

Message ::

name : String

messageKind : MessageKind

messageSort : MessageSort

sendEvent : Mos

sendReceive : Mos

argument : seq of ValueSpecification;

MessageKind = <COMPLETE> | <UNKNOWN>;

MessageSort = <SYNCHCALL> | <ASYNCHCALL>;

LiteralString ::

value : String;

282 APPENDIX H. UML AST

LiteralInteger ::

value : nat;

-- Others

String = seq of char;
Id = String

Listing H.1: UML AST

Appendix I

Features supported by
Transformation

In this appendix a table I.1 shows a overview of the supported features by the VDM -
UML transformation. An X denotes that the feature is fully specified. An (X) denotes
that the feature is partly specified.

283

284 APPENDIX I. FEATURES SUPPORTED BY TRANSFORMATION

Name (VDM) Rule # AST VDM�UML UML�VDM

Core
Classes 1 X X X
Inheritance 14 X X X
Functions 17 X X X
Operations 17 X X X
Generic classes 16 X X -
Values 6, 5 X X X
Instance variables 6, 5 X X X
Initial value 7 X X X
Visibility 2 X X X
Thread 13 X X -
Abstract Class 15 X X -
Static Access 3 X X X

Types
Product Types 10 X X X
Union Types 9 X X X
Record Types - - - -
Optional Types 5 X X -
Object Reference Types 5 X X X

Collections and Relationships
map 12 X X -
set 11 X X (X)
seq 11 X X (X)
seq1 11 X X (X)

Traces
Core Definition 1819,20,24 X - X
Definition List 21 X - X
Choice Definition 22 X - X
Repeat Pattern 23 X - X
Bindings - - - -

Table I.1: Overview of supported features. X equals full support where (X) implies a
partly support.

List of Symbols
and Abbreviations

Abbreviation Description Definition

API Application Programming Interface page 82
AST Abstract Syntax Tree, a tree representation of the syn-

tax of some source code
page 67

ASTGen Converts an AST to VDM classes and Java interfaces.
Maintained by the Overture project.

page 67

BES Behavior Execution Specification, denoted the rectan-
gle defining the execution time of a message in a SD

page 157

CD UML Class Diagram page 24
CSK CSK is a Japanese conglomerate, owned by CSK

Holdings Corporation
page 44

DAG Directed Acyclic Graph, a directed graph with no di-
rected cycles

page 135

FM Formal Method page 9
GAO Gesellschaft für Organisation page 44
IBM International Business Machines page 43
IFAD IFAD develops and markets simulation & training

products, networked simulation solutions, web and in-
formation technology solutions for civilian, military
and Homeland Defence applications

page 44

ISO International Standards Organization page 43
JAR Java ARchive, Java archive for source code, a optional

manifest can specify which class to execute within the
JAR file

page 111

MDA Model-driven architecture, a software design approach page 15
MOF Meta-Object Facility, a meta-model used to formally

define Unified Modeling Language (UML)
page 21

MOS Message Occurrence Specification, links a message to
other elements in a SD such as life lines and fragments

page 157

285

286 LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description Definition

OMG Object Management Group, the consortium responsi-
ble for CORBA architecture, Unified Modeling Lan-
guage, and Model-driven architecture

page 19

OML Overture Modeling Language, a specification lan-
guage inspired by the object-oriented formal specifica-
tion language VDM++ (Vienna Development Method)

page 17

OO Object-oriented, a computer programming paradigm page 19
RVL Rose-VDM++ Link, integrates UML and VDM++ by

providing a tight coupling between the VDM Toolbox
and Rational Rose

page 31

SD UML Sequence Diagram page 23
SIC Sensor Integration Controller page 44
UIS UML Infrastructure Specification page 71
UML Unified Modeling Language page 19
USS UML Superstructure Specification page 71
VDM Vienna Development Method page 43
VDMEditor Eclipse based editor for VDM page 119
VDMJ VDM tool implemented in Java by Nick Battle from

Fujitsu
page 46

VDMTools A development tool supporting precise modeling in the
notations VDM-SL or VDM++

page 44

VDMUnit VDM unit test freamwork page 111
VICE VDM In Constrained Environment, a recent research

extension of
page 43

XMI XML Metadata Interchange (XMI), is an Object Man-
agement Group (OMG) standard for exchanging meta-
data information via Extensible Markup Language
(XML)

page 82

XML Extensible Markup Language (XML) page 40

	1 Introduction
	1.1 The formal method
	1.2 The informal method
	1.3 Model transformation
	1.4 Participation in the Overture Project
	1.5 Thesis Goal
	1.6 Reading Guidelines
	1.7 Related Work
	1.8 Outline of the Thesis
	1.8.1 Quick Overview of the Thesis
	1.8.2 Thorough Exposition of the Thesis

	2 UML
	2.1 History of UML
	2.2 UML Usage
	2.2.1 KLEIN+STEKL GmbH
	2.2.2 Borland Together Control Center
	2.2.3 Telelogic Rhapsody

	2.3 The UML Meta-model
	2.4 Choosing versions of UML for comparison
	2.5 UML 1
	2.5.1 Class Diagram
	2.5.2 Sequence Diagram
	2.5.3 Rose-VDM++ Link

	2.6 UML 2
	2.6.1 Class Diagram
	2.6.2 Sequence Diagram

	2.7 Tool support for XML Metadata Interchange (XMI)
	2.7.1 XMI incompatibilities between UML modeling tools
	2.7.2 Limitation of Sequence Diagrams in XMI

	3 VDM
	3.1 History of VDM
	3.2 VDM Usage
	3.2.1 Banknote Processing
	3.2.2 VDMTools
	3.2.3 ISEPUMS
	3.2.4 A Mission Critical Data Handling Subsystem

	3.3 Tool support
	3.4 VDM Classes
	3.5 Types
	3.6 Test Trace
	3.7 Trace Example

	4 Static Model Transformation
	4.1 Classes
	4.2 Visibility
	4.3 Data types
	4.4 Instance variables and values
	4.5 Union Types
	4.6 Product Types
	4.7 Collections
	4.8 Relationships
	4.9 Thread
	4.10 Generalization
	4.11 Abstract
	4.12 Generic classes
	4.13 Operations and Functions

	5 Static Model Specification
	5.1 Abstract Syntax Tree
	5.1.1 AST definition to VDM class structure (ASTGen)
	5.1.2 OML AST
	5.1.3 UML AST

	5.2 Transformation Specification Overview
	5.3 The Transformation Process
	5.4 Transforming VDM to UML
	5.5 UML Model to XMI
	5.5.1 XML parser / deparser

	5.6 Transforming UML to VDM
	5.7 Merging Changes in VDM and UML Models

	6 Interaction Model Transformation
	6.1 VDM traces and UML sequence diagrams
	6.2 Transformation Rules
	6.2.1 Trace placement
	6.2.2 Trace name
	6.2.3 Trace Apply Expression
	6.2.4 Sequencing of trace apply expressions
	6.2.5 Trace choice operator
	6.2.6 Repeat Pattern for apply expressions
	6.2.7 Nested sequencing messages

	7 Interaction Model Specification
	7.1 Subset of UML AST in relation to sequence diagrams
	7.2 Transformation Specification Overview
	7.3 Transforming UML SD to VDM Trace
	7.3.1 Summary of traces specification

	8 Transformation implementation
	8.1 Testing
	8.1.1 Script testing
	8.1.2 Unit test

	8.2 Java code-generator for VDM
	8.3 Integrating UML in Overture Tool
	8.3.1 Development of the UML Plug-in
	8.3.2 Deployment of the Plug-in

	9 Concluding Remarks
	9.1 Achieved Results
	9.1.1 Learning outcome
	9.1.2 Concrete achievements

	9.2 Future Work
	9.3 Overall Conclusion

	A Overture Workshop 5 in Braga Portugal
	A.1 Participation in Workshop
	A.2 What did we gain from the Workshop
	A.3 Workshop conclusion

	B Omitted UML 1 Constructs
	B.1 Association
	B.2 Dependency
	B.3 Derived Element
	B.4 Package and subsystem
	B.5 Association Class
	B.6 Interface
	B.7 Realization
	B.8 Attributes of metaclass Class
	B.9 Concurrency
	B.10 DataType

	C Omitted UML 2 Constructs
	C.1 Internal Structure of a Class
	C.2 Message kind
	C.2.1 Part decomposition

	C.3 Fragment
	C.3.1 ConsiderIgnore Fragment
	C.3.2 InteractionUse

	D Significant changes to the UML meta-model
	D.1 Deprecated UML 1 meta-classes
	D.2 New UML 2 meta-classes

	E Specification of the UML Abstract Representation
	E.1 Class Diagram
	E.1.1 Model and ModelElement
	E.1.2 Class
	E.1.3 Type
	E.1.4 Association
	E.1.5 Constraint and ValueSpecification

	E.2 Sequence Diagram
	E.2.1 Collaboration
	E.2.2 LifeLine
	E.2.3 InteractionFragment
	E.2.4 Message

	E.3 UML Specification Citations

	F Model coverage
	F.1 Transforming from VDM to UML
	F.1.1 Transformation from VDM to UML (Vdm2Uml)
	F.1.2 VDM to UML type converter (Vdm2UmlType)
	F.1.3 Serilize the UML AST to XMI with EA support (Uml2XmiEAxml)

	F.2 Transforming UML to VDM
	F.2.1 Convert XMI to a UML model (Xml2UmlModel)
	F.2.2 Transform UML to VDM (Uml2Vdm))

	F.3 OML AST to VDM files printer
	F.3.1 Proxy for printer (Oml2Vpp)
	F.3.2 Visitor for OML which implements a printer for source files (Oml2VppVisitor)

	G OML AST
	H UML AST
	I Features supported by Transformation
	List of Symbols and Abbreviations

