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Abstract. An inventory of current semantic models of the Vienna Development
Method (VDM) notations are presented, for which their purpose, strengths and
weaknesses are assessed. The focus will be on VDM Real Time (VDM-RT) with
(multi-threading and multi-core) concurrency, communication and real-time. Ar-
eas are identified where the semantics is currently unclear, incomplete or even
undefined. Challenges in adopting novel language concepts are investigated, for
example for modelling uncertainty in real-time distributed systems. Approaches
taken by other formalisms are presented and suggestions are offered how these
ideas could be applied in the context of VDM-RT. The result of this work aims
to become a roadmap for the definition of a full semantics of VDM-RT, on the
short term focused on symbolic execution (simulation), but needs to be amenable
to formal proof and exhaustive search (model checking) in the future.

1 Introduction

The Vienna Development Method (VDM) was first conceived at the IBM laboratories
in Vienna in the early seventies [Luc87,FLVOS8]. Later on different dialects of VDM
evolved at different places in the world and BSI and subsequently ISO standardised a
version of VDM called VDM-SL [P. 96,PT92]. As the object-oriented paradigm gained
popularity, an object-oriented extension called VDM++ was developed in the Euro-
pean research project called Afrodite [FLM™05]. In order to provide better facilities for
modelling real-time embedded and distributed systems a VDM Real Time (VDM-RT)
extension was developed [MBD'00,VLHO06].

The initial version of VDM-RT was developed in a European research project called
VDM In Constraint Environments (VICE) but this was developed for a single CPU
[MBD™00]. At the beginning of the PhD work by Verhoef this VICE version was used
to attempt to model a distributed real-time embedded system [WTVLO04]. This mo-
tivated extensions of VDM-RT to incorporate constructs enabling the formulation of
distributed systems and as a consequence it was possible to model this case study in a
much better fashion.

The semantics made for VDM-SL are very strong, and gives a solid foundation
for the language. These semantics are described using the denotational semantics style.
Less work has been put into the semantics for VDM++ and VDM-RT, and hence more
issues are present. It is some of these issues for VDM-RT that we will describe in this
paper, and present possible solutions.

After this introduction, Section 2 provides an introduction to the constructs from
VDM-RT that are extensions compared to the VDM++ notation. Afterwards Section 3



provides a list of semantics issues in the current version of VDM-RT that needs to be
solved. This is followed by Section 4 which provides a list of the corresponding issues
in relation to the co-simulation that is developed as a part of the DESTECS project. At
the end of the article, Section 5 provides an overview of the future work in this area and
finally Section 6 gives a few concluding remarks about the practical plan for producing
the necessary semantic definitions.

2 Constructs in VDM Real-Time

In VDM++ models are structured in classes and inside these one can define constant
values, instance variables (the state of instances of a class), functions with expressions
as their body and operations which have statements as body and can access and modify
instance variables that are visible inside a class. In addition a class can have a thread and
synchronisation of threads is controlled using permission predicates that are logical ex-
pressions describing the requirements for activation of a particular operation. VDM-RT
is an extension to VDM++ and from here it is important to note that static operations can
be defined inside VDM-++ classes. In VDM-RT it is furthermore possible to make use
of asynchronous operations in VDM-RT using the async keyword. This will spawn a
new thread that will be executed concurrently with the calling thread.

In VDM-RT a special system class administers the static topology of components
inside the system. This includes the ability to distribute instances of classes (objects)
to a special type of predefined CPU class. For each CPU the designer can specify the
scheduling mechanism as well as the capacity described as number of computations
per time unit. In order to enable communication between active threads in the system,
CPUs can be connected by BUSes. For each individual BUS the designer can specify
the bandwidth as well as which CPUs are connected by the BUS. All instances created
inside a deployed instance will be residing on (deployed to) the same CPU. A special
virtual CPU and a special virtual BUS are implicitly created. The virtual CPU will be
used to all instances that are not explicitly deployed to a CPU declared in the system
class. This is used for the things that are outside the system (i.e. the environment classes
and the debugging desired by a user).

In VDM-RT, there is a notion of time but per default no unit of time is assumed
so that is up to the user. However, the convention most frequently used is that the time
unit is milliseconds. In order to access the current global time, the keyword time is
used. All VDM constructs have been assigned a default duration and thus the semantics
include a time penalty. If the user can give estimates of fixed execution times, this can
be described using the duration statement which then overrule the default durations
of the body statements. If, instead, the execution time is relative to the speed of the
CPU on which the thread is deployed, the cycles statement can be used which again
overrule the default durations. In the case of nested durations and cycles these are also
overruled by the outermost duration/cycles statement. The virtual CPU is special in the
way that here all default durations are set to zero in order for the timing influence of
the elements outside the system in a simulation having minimal impact (unless the user
wishes that to happen by inserting duration statements).



Semantically, a multi-cpu VDM-RT model can either conduct an execution step or
progress the global time (for all resources). So conceptually speaking there is a master
scheduler that allows all CPUs to progress until they need to take a time step. When all
the CPU schedulers have done this they report back how large a time step they would
like to take. For BUSes, the analogy is whenever the next message is due to be delivered
at a receiving CPU. The master scheduler then takes the smallest of these time steps
and tell all CPU schedulers to advance with this time and execute again if they have
no remaining time to wait. The semantics provided in [VerO8] on purpose does not
include anything for the scheduling, since in essence, it corresponds to a reduction of
the possible interleavings of the concurrent threads executing.

Finally it is possible to specify periodic threads using a 4-tuple (p, j,d, 0): p de-
scribes the period; j is the jitter, d is the minimum time between invocations of a pe-
riodic operation and o is the initial offset (see Fig. 1). Note that this syntax does not
allow to specify sporadic behaviors. Sporadic threads are threads which are periodic,
whereby only a value for d is specified.
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Fig. 1. Period (p), jitter (j), delay (d) and offset (0)

The implementation of the VDM-RT semantics is visible for the executable subset
in the interpreters in VDMTools [FLS08] and Overture [LBFT10]. In this paper we
will limit our investigation to the VDMI interpreter from Overture.

3 Open Semantic Issues in VDM-RT

The use of VDM-RT has lead to the identification of missing semantics definitions, or
to constructs which are currently defined without distribution having been taken into
account. Lastly, the semantic definition of some constructs deviates from the reality
implemented in the VDM-RT interpreter. This all makes it hard for a user to specify a
model which is faithful to the real world distributed system.

3.1 Public variables

The semantics of the current VDM-RT interpreter allows read and write access to all
public variables in a model without the use of a BUS. This means that any public in-
stance variable or value can be accessed from any CPU in a system without taking



distribution into account, where variables located on different CPUs require BUS com-
munication. This will also influence the timing of the CPUs accessing the variable.

We suggest that all access to such public variables are done through a BUS if the
CPU reading or writing the public variable is different from the CPU where the variable
is located. We suggest that BUS communication is used for any public variables includ-
ing static variables. Alternative solutions might be to assume that get and set oper-
ations are always implicitly available on class member variables. External references
across CPU boundaries, even through public variables, should always be performed
through these implicit get and set operations, much akin to the solution taken in
C#. Another approach could be to disallow public member variable access across CPU
boundaries by static or run-time checking.

3.2 Static variables and operations calls

In the semantics of the current VDM-RT interpreter static variables are globally avail-
able to all class instances in a system. Static variables can both be read and written to
without taking deployment into account, thus no replication of static variables is done
between CPUs in the system. The semantics does not distinguish if a class with a static
variable is deployed to more than one CPU, or from which CPU a static variable is
accessed. However, by ignoring distribution of static variables, the semantics positions
itself far from reality since such distribution has to be carefully performed to ensure that
static variables are updated globally at a particular time.

Static operations are allowed to be called from any class instance in a system and
are executed on the CPU of the caller. Deployment is not considered thus no BUS com-
munication. Ignoring distribution of static operations causes a number of problems, (1)
by ignoring distribution and using static operations to access static variables the prob-
lem of static variables applies as described above; (2) if a static operation is called from
a CPU which does not have any knowledge of the static operation(since no instances of
its class is deployed to it) then it should not be possible to execute it locally, however,
this is currently possible. If a static operation should be executed it must exist in the
system and be deployed to a CPU; (3) If a static operation is accessed and an instance
of a class where it is defined is deployed in a system, access to the definition should
happen through a BUS, if accessed from another CPU than the one hosting the static
definition. This is not the case since all static calls bypass all BUS communication.

We suggest to change the way static variables and operations are interpreted in
VDM-RT.

Static variables should only exist within the CPU they have instances that are de-
ployed on restricting direct access from other CPUs. If more than one instance of a
class declaring a static variable are deployed to the same CPU the static variable should
naturally be shared. Thus, in this way static variables will become shared per CPU.

Static operations should be available throughout the system, however, the execution
of the operation may vary based on the deployment, which can be split up into three
alternatives:

Static definition available on calling CPU The caller of a static operation is located
on the same CPU as at least one instance of the class declaring the static operation.



In this case the operation can be accessed directly and all execution will take place
at the same CPU.

Static definition only available on virtual CPU No instances of the class declaring
the static operation exists on any system CPU, thus the caller does not have direct
access to the static operation. In this case the static operation will be hosted by
the virtual CPU, and the caller has to access the static operation through a BUS
connection to the virtual CPU. The static operation is executed on the virtual CPU
and the call on the callers CPU.

More than one CPU hosts the static definition If more than one CPU holds instances
of the class declaring the static operation and no instance exists on the CPU of the
caller, a CPU is selected non-deterministically to host the static operation call. Thus
in this case the calling CPU request a call of the operation, this is send over the BUS
to the host CPU which activates and executes the static operation and returns the
result over the BUS to the calling CPU.

The suggestion provided for static operations does not give semantics to permission
predicates specifying the scope of history counters for static operations. This is a prob-
lem if a static operation is evaluated on a non-deterministically chosen CPU where the
history counters are local to the chosen CPU.

3.3 Time advance and periodic threads

The VDM-RT semantics in [Ver08] and of the VDM-RT interpreter specifies that time
must progress when expressions or statements are executed on a system CPU. However
one exception is explicit use of a duration statement which require the virtual CPU to
advance time as well. The semantics defines periodic threads as statements being acti-
vated for execution each P time units on a CPU, it does not give any guarantee about
the execution, only that it can execute after its activation time. However no semantics
are defined for the case where a model is blocked but contains periodic threads which
causes a model to wrongly deadlock. A deadlock occurs in the current semantics if a
model consists of at least two threads, one being main and another being a periodic
thread, where main blocks after starting the periodic thread. The reason for this dead-
lock is that time does not progress if nothing is executing, which occurs when main
blocks and the current periodic thread finishes at time ¢ where ¢ < P and where P is
the period of the periodic thread running. If £ < P then the activation time of the next
periodic thread is not reached and the model will deadlock. This is not aligned with the
idea of periodic threads, where all periodic threads can be activated independent of any
model state. The current semantics does not give any special semantics to multiple peri-
odic threads located on the same CPU. The semantics only allow one thread to execute
on a CPU at any point in time. However this is a problem if periodic threads are located
on the virtual CPU and have the same period which in effect should let them execute
synchronously because time is ignored on the virtual CPU.

We suggest that the semantics allow forward time jump in the execution of a model
if all threads are blocked and one or more periodic threads exist. If a model is blocked
at time ¢ it can suggest the master scheduler to jump to P, if t < P, when P, is the time
of the next period of the periodic thread which has the earliest activation time.



4 Open Semantic Issues with Co-Simulation

Extending VDM real-time to support co-simulation as used in DESTECS [BLV*10]
requires a number of new semantic definitions and clarifications of existing informal
definitions. From [Ver08] it shows that semantics must be given to interrupts and time
must be given an international standard such as [s] seconds, so other simulators e.g.
from the continuous time domain, can synchronise time during simulation.

4.1 Interrupts

Interrupts is a new way to connect model and environment where interrupts spawns new
threads called interrupt handlers and influences the scheduling of a model. Interrupts
can occur at any point in time during execution. In the semantics of VDM-RT a model
is connected to the environment through a class instance deployed to the virtual CPU
which feeds environment events into the model and allows the model to read environ-
ment state. We propose to extend the VDM-RT semantics with definitions for interrupt
handling. An interrupt is an event occurring in the environment which is pushed into
the model and handled by an interrupt handler. An interrupt handler must execute with
a variable priority higher than all normal threads and it should be possible to determine
if an interrupt handler has completed within a certain time frame. To enable interrupts
in VDM-RT a more advanced scheduler, capable of prioritising interrupts, is required
along with a clear definition of how interrupts influences the execution of both normal
and asynchronous threads. Lastly, interrupt handlers should be asynchronous opera-
tions. Listing 1.1 is a proposal of a definition of an interrupt handler.

class InterruptHandler

operations
public async notify : () ==> ()
notify == is subclass responsibility;

end InterruptHandler

Listing 1.1. VDM InterruptHandler signature

However the definition in Listing 1.1 should not be part of the model but built into
the tool. In Listing 1.2 an example is given of an interrupt handler for a button press
event in the environment.

class ButtonPressInterruptHandler is subclass of InterruptHandler
public async notify : () ==> ()

notify ==

end ButtonPressInterruptHandler

Listing 1.2. VDM ButtonPressInterruptHandler example for Button Press

We propose that interrupt handlers are to be registered on a CPU and not in a sys-
tem. All interrupt handlers are then to be executed on the CPU they are bound to. The
CPU can then be extended with an operation to register the interrupt handler such as:
public regIntHandler : InterruptHandler x int ==> ()

An interrupt handler should then be able to be registered by instantiation of the handler



class and then deployed to the CPU as shown in Listing 1.3 where an instance of the
button press interrupt handler is registered on cpul.

-
system S

cpul : CPU;

handler : ButtonPressInterruptHandler;

. —-— inside the constructor

cpul.regIntHandler (handler, MAX_PRIORITY) ;

end S

- Y,

Listing 1.3. An example showing how an interrupt hander can be registered on a CPU.

Note that an alternative approach, involving a syntax change to the VDM RT nota-
tion, was proposed in [Ver05].

4.2 Measurement of time in VDM-RT

In VDM-RT all expressions and statements have a predefined default execution time
specified which is set to 2 time units for all expressions and statements. The semantics
defines two constructs to explicitly override the default durations at runtime: durations
and cycles. Duration statements define the number of time units the enclosing statement
takes to override any inner (default) durations. The cycle statement defines the number
of cycles the enclosing statement takes, the time units can be derived by dividing the
number of cycles by the CPU speed+1.

However, defining time as time units is not adequate to enable a co-simulation with a
continuous time simulator, since time must be synchronised between the two simulation
engines for the outcome of the simulation to be valid. The architecture of the VDM-RT
controller will not correspond to reality if synchronisation of time is wrong, since it will
affect the calculation speed of the architecture of the VDM-RT controller.

We suggest to give time steps a unit. This will enable synchronisation with a con-
tinuous time simulator. If such a unit is chosen to be [s] seconds then we would also
suggest that the capacity of CPUs is changed into calculations per seconds specified
in [Hz] and BUS rates to be specified in [bit/s]. Duration statements should also use
seconds to specify how long the enclosing statement takes. Alternative, if no time unit
is chosen but a clear connection between CPUs, BUSes, duration and cycle statements
is defined, then a mapping between the VDM-RT model time and the connected con-
tinuous time co-simulator notion of time can be defined as a parameter to the VDM-RT
interpreter (mapping logical time units in VDM-RT into real-time and vice versa).

Lastly, we would also suggest to change default durations for all expressions and
statements from durations into cycles, this way a model’s timing will change if the CPU
capacity changes. Furthermore, each expression and statement should have individual
cycles specified. The cycles of an assignment expression given by x := y + z can
be calculated by breaking it down into low level commands as shown in Table 1 where
the mov move command is used to move y and z into two registries and then cmp is
used to combine them and move them to x. This is 4 cycles in total for the assignment.




If this assignment was to be executed on a CPU running at 2 KHz, performing 2000
cycles / second then the assignment would take 0.002 second to complete.

Cycles of VDM assignment :=
Instruction|Description
mov Move y to registry
mov Move z to registry
cmp Combine the two registries
mov Move result to x
4 Total cycles

Table 1. Calculation of VDM equals by use of assembly instructions.

4.3 Limitation of Co-Simulation interface

The co-simulation interface is limited to support a small set of types understood by
both discrete time and continuous time simulators. This set will consist of types such as
booleans, integers and doubles/reals no complex structures can be transferred. However,
a common way of handling decimal numbers is required so simulation engines will be
able to compare decimal numbers across the interface. A question remaining about
restricted types e.g. an integer with an invariant attached. Should this be enabled and
when should they then be checked?

5 Future Work

In addition to the issues raised above there are a number of additional desirable exten-
sions to VDM-RT that we think are worth consideration in the future. When semantics
work for VDM-RT is undertaken we propose that such possible language extensions
are also considered for their semantics consequences for including each of them can be
based on a proper semantic foundation when a decision is to be taken by the VDM-10
language board. The desirable extensions include:

— As indicated in Section 3.3 it is necessary to have multiple virtual CPUs in order to
specify fully time independent input stimuli in the environment. Essentially a new
virtual CPU is assigned to each new instance which is created outside the the scope
of the system class. This would have the advantage that the threads executing on
objects deployed at the virtual CPU would be fully independent of each other from
a timing perspective.

— Enabling the use of the time keyword in permission predicates and pre and post
conditions for operations. This would give more expressive power to the VDM
modeller but it is so far unclear what the semantic consequences would be and how
it would impact the performance of the interpreter.



— Identically, history counters (as used in permission predicates) should be extended
with a notion of time. For example, #age which would return the amount of time
passed since the last # req was passed. This could be used to specify response time
requirements as a precondition, or maximum operation elapse times as a postcon-
dition. For more examples, see [Ver05].

— As indicated before, add the ability to specify so-called sporadic periodic threads,
for example using the concrete syntax

[threads sporadic (d) drinkWine J

where d only specifies the minimum interarrival time between two periodic calls to
drinkWine.

— Include probabilistic capabilities in the semantics for both periodic (and sporadic)
threads and duration statements. For example, we could write

[ duration (10, 100) drinkBeer(); J

to specify that the execution of the operation drinkBeer would take an arbitrary
amount of time chosen from the [10, ..., 100] interval. Arbitrary could mean that the
strategy used is specified as a global parameter at simulation level (i.e. a random
value taken from a normal or exponential distribution). As an extension, one could
even explicitly specify how the value from the interval is taken by adding an extra
parameter, which refers to an algorithm, taking the two bounds as input parameters,
which on return computes the value. This would for example allow the ability to
specify caching behaviour (first call is expensive, next calls are cheap). The same
strategy could be followed for the looseness provided in periodic threads with jitter
or sporadic threads. However evaluation of the algorithm must be done without
affecting the timing of the model in which it is declared.

— The current system class forces a static topology of the system components. It is
worthwhile analyzsng what the semantic consequences would be for enabling a
dynamic deployment architecture [Niel0].

— What about including multiple BUSes between two CPUs and if that is specified
how shall the routing of such messages be decided upon?

— Shall it be possible to let the user set a limit for buffer size for the messages received
at a CPU? Currently, when a remote call is attempted, the caller is not blocked when
the BUS is busy. It assumes that there exists an infinite buffer between the BUS and
each CPU. Detecting design bottlenecks is therefore potentially hampered because
these limits do exist in reality. Perhaps the buffer size should be a global simulator
setting, or a configurable item per CPU or per CPU/BUS interconnection.

— Would it be desired to introduce a new construct to express broadcast messages,
allowing a model to contain public static broadcast operations which can be picked
up from any class on any CPU? If introduced should it then be a new keyword
broadcast or a new use of static and async.

— What would the semantics be if we had multiple system classes in order to describe
system of systems?

— What are the semantics with VDM exceptions (ie. errors) thrown in inter-CPU
calls? In particular, what happens to exceptions raised by async calls? Do they
propagate over the physical CPU border? What happens with synchronous calls



across a CPU boundary? What if the message gets lost on the bus (relevant in the
context of the DESTECS project)? Does this lead to an exception on the caller
CPU?

— We do not have explicit definitions of the scheduling policies. In fact some of the
names of these are misleading. How shall it be possible to define more of these in
the future both for CPUs and BUSes? Can they be specified in a late bound fashion,
as part of the model, rather than as a built-in part of the language?

6 Concluding Remarks

This paper have pointed out a number of semantics issues that needs to be solved for
the VDM-RT language. The plan for the future is to get an agreement in the Overture
Language Board about what the semantics shall be like and then define the semantics of
the VDM-RT extensions in relation to the ISO VDM-SL standard. This will most likely
be in the same operational style as used in [Ver0O8] but inspiration will also be taken
from other languages with similar constructs such as Circus with time and resources
[SCIS10]. Similarly, for the probabilistic extensions, inspiration can be gained from the
MODEST language and supporting tools [HH09]. With respect to the definition of the
VDM RT semantics, one could for example break up the work into tasks such as:

— Define core abstract syntax (CAS) for VDM
— Define mappings from VDM dialects to CAS
— Define CAS semantics

Here the semantics could be split up into areas of interest (e.g. concurrency scheduling,
object orientation, time and distribution/deployment).

At the practical level the plan is that Kenneth Lausdahl and Peter Gorm Larsen will
spend a week at York University with Jim Woodcock at the beginning of November
2010 to work on this semantic definition. We hope that more volunteers are interested
in taking part in this semantics effort.
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