
Automated Exploration of Alternative System
Architectures with VDM-RT

Kenneth Lausdahl and Augusto Ribeiro

Aarhus School of Engineering, Dalgas Avenue 2, DK-8000 Aarhus C, Denmark

Abstract. Choosing the optimal deployment of a distributed embedded applica-
tion onto alternative hardware configurations is often difficult and time consum-
ing. When developing a new product, a company must chose a hardware architec-
ture that ensures both that the system behaves correctly according to its functional
and timing specifications but also keeps its production cost at a minimum. The
investigation to find this tradeoff between cost and performance can be very ex-
pensive if carried out at implementation time. A company can save money and
development time if there is a possibility to quickly explore the design alterna-
tives before the start of the implementation. In this paper we describe a method
and associated tool support to assist in finding the best system design solution.

1 Introduction

As distributed real-time embedded systems become more and more prevalent around
us, new techniques must to be used to ensure lower costs of development while keeping
the service quality high. The quality of these kind of systems is normally not only
measured by functional correctness but also by timing behaviour correctness. Because
timing correctness is so essential when developing such systems, the implementation
cost can increase considerably if it is discovered at later stages of the development that
the selected hardware architecture cannot fulfil the timing parameters. Typical design
questions that cross an architect’s mind are [13]:

1. Does the proposed architecture meet the performance requirements of all applica-
tions?

2. How robust is the chosen architecture with respect to changes in the application or
architecture parameters?

3. Is it possible to replace components by cheaper, less powerful equivalents to save
cost while maintaining the required performance targets?

Models of software/hardware can be used to assist the system architect in answer-
ing these questions. They have previously been used to explore and validate different
deployment architectures even before the implementation cycle starts [14,12]. By do-
ing so, it is possible to gain knowledge, at an early stage, of the product that is being
developed, even before any deployment decisions have been made. Usually, companies
that wish to develop a distributed embedded system have certain target Printed Circuit
Boards (PCBs) in mind, which support a small limited range of CPUs. These PCBs es-
tablish the architecture of the hardware and by using models and simulation techniques,

2 Kenneth Lausdahl and Augusto Ribeiro

one can gain insight into which PCB should be selected in order to fulfil the project re-
quirements. Furthermore, one can identify which kinds of CPUs and buses are needed
to respect the speed/capacity requirements of the application. Having a method and tool
support to test out all the interesting PCB/CPU/bus combinations and identify which
ones satisfy the system timing invariants, would give the system architect an advantage
when making such initial design choices.

The modelling language VDM-RT, enables a system architect to do these kinds
of different simulations, but the process of changing the system architecture and ap-
plication deployment is very cumbersome and lacks both flexibility and tool support.
Everything concerning deployment is tightly connected and mixed with the applica-
tion construction in the system1 class. This makes it difficult and impractical to explore
different architectures from a modeller’s point of view. When one wants to make such
changes, one must either overwrite the system class, and by doing so losing the pre-
vious system, or create a new project and copy all the files, except the system class, and
then create a new system class.

In this paper we show how deployment of VDM-RT models can be modified to
support exploration of different hardware configurations without changing the model
and how this can help a system architect to find the good designs. This can be seen as a
part of a larger effort in order to explore the different design alternatives of an embedded
distributed system in the style used in the DESTECS project [2]. We consider “the best
design” to be any solution that solves the proposed problem. It is then up to the architect
to decide which is the best one based on system invariants and additional cost analysis.

The remainder of this paper is set out as follows. In section 2 an introduction to
VDM and the VDM-RT dialect is presented. Section 3 illustrates how we separate the
model from its deployment without loosing expressiveness. In section 4, the typical de-
sign questions are addressed and solutions are presented to show how this work assists
the answering of these questions. Section 5 illustrates how this work can be used to ex-
plore an in-car-navigation system. Lastly, section 6 concludes this work with remarks
and suggestions for future improvements.

2 The VDM Real-Time Dialect

The Vienna Development Method (VDM) [1,8,4] was originally developed at the IBM
laboratories in Vienna in the 1970s and as such it is one of the longest established formal
methods. The VDM Specification Language is a language with a formally defined syn-
tax, static and dynamic semantics. Models in VDM are based on data type definitions
built from simple abstract types such as bool, nat and char and type constructors
that allow user-defined product and union types and collection types such as (finite) sets,
sequences and mappings. Type membership may be restricted by predicate invariants.
Persistent state is defined by means of typed variables, again restricted by invariants.
Operations that may modify the state can be defined implicitly, using pre- and post-
condition predicates, or explicitly, using imperative statements. Such operations denote
relations between inputs and pre-states and outputs and post-states, allowing for non-

1 The system class describes the system architecture and its deployment.

Automated Exploration of Alternative System Architectures with VDM-RT 3

determinism. Functions are defined in a similar way to operations, but may not refer to
state variables.

Three different dialects exists for VDM: The ISO standard VDM Specification Lan-
guage (VDM-SL) [5], the object oriented extension VDM++ [6] and a further extension
of that called VDM Real Time (VDM-RT) [15,7]. All three dialects are supported by
the open source tool called Overture [9].

VDM++ and VDM-RT allow concurrent threads to be defined. In VDM-RT, the
concurrency modelling can be enhanced by deploying objects on different CPUs with
buses connecting them. Operations called between CPUs can be asynchronous, so that
the caller does not wait for the call to complete.

VDM-RT has a special system class where the modeller can specify the hardware
architecture, including the CPUs and their bus communication topology; the dialect
provides two predefined classes for the purpose, CPU and BUS. CPUs are instantiated
with a clock speed (Hz) and a scheduling policy, either First-come, first-served (FCFS)
or Fixed priority (FP). Only one system is allowed to be declared at a time for a single
model.

The initial objects (artifacts) defined in the model can then be deployed to the de-
clared CPUs using the CPU’s deploy operations. Buses are defined with a transmis-
sion speed (bytes/s) and a set of CPUs which they connect. Object instances that are not
deployed to a specific CPU (and not created by an object that is deployed), are auto-
matically deployed onto a virtual CPU. The virtual CPU is connected to all real CPUs
through a virtual bus. Virtual components are used to simulate the external environment
for the model of the system being developed.

In figure 1 a graphical representation of an in-car navigation radio system is shown,
which illustrates deployment with three CPUs connected by a single bus.

Fig. 1. Overview of the In-car Radio Navigation System

The in-car-navigation system shown in figure 1 is represented as a system class
in listing 1.1. Firstly, the application artifacts are declared as instance variables (mmi,

4 Kenneth Lausdahl and Augusto Ribeiro

radio and navigation). The definition of the hardware appears after: in this case
three CPUs are declared (CPU1, CPU2 and CPU3) with a bus (BUS1) which connects
them. Finally, the system architecture and deployment of the artifacts to the specific
CPUs appear in the last section.�
system RadNavSys
instance variables
-- create artifacts
static public mmi : MMI := new MMI();
static public radio : Radio := new Radio();
static public navigation : Navigation := new Navigation();

-- create CPUs (policy, capacity)
CPU1 : CPU := new CPU (<FP>, 22E6);
CPU2 : CPU := new CPU (<FP>, 11E6);
CPU3 : CPU := new CPU (<FP>, 113E6);

-- create bus (policy, capacity, topology)
BUS1 : BUS := new BUS (<FCFS>, 72E3, {CPU1, CPU2, CPU3})

operations
public RadNavSys: () ==> RadNavSys
RadNavSys () ==
(navigation.setMmi(mmi);

radio.setMmi(mmi);
radio.setNavigation(navigation);
mmi.setRadio(radio);

CPU1.deploy(mmi,"MMI");
CPU2.deploy(radio,"Radio");
CPU3.deploy(navigation,"Nav");
...

);
end RadNavSys
� �

Listing 1.1. A typical system class

Special system invariants based on timing constraints can be validated through post
analysis of log files [3]. This enables the modeller to express time constraints on oper-
ations and instance variables; e.g. when volumeUp is called then no later than three
time units later the volume must be incremented. Log files used for post analysis can
be directly created by the VDM interpreter [10] enabling automated checking of such
time constraints, allowing a systematic rejection of models which do not meet the time
constraints either because the models are wrongly specified or the architecture used
is not powerful enough. At the this point in time only post analysis is possible but a
version to check system invariants at run-time is being investigated [11].

Automated Exploration of Alternative System Architectures with VDM-RT 5

3 Ensuring Separation Between Software And Hardware

To enable automated exploration of hardware architectures for VDM-RT models, chang-
es must be made to the way deployment is expressed. Currently, the modeller must
create new projects with a custom system class for each architecture to be explored.
This method is inefficient and difficult to automate. The basic problem with the current
system definition is the close coupling between system architecture and system deploy-
ment. Ensuring a clear separation between architecture and deployment allows a system
to be configured and tested against any number of hardware architectures without the
hassle of creating new test projects or changing the system architecture.

This section will present a different approach to express deployment from the cur-
rent VDM-RT system class explained in section 2 while preserving the same run-time
properties.

This section will present a different approach to express deployment from the cur-
rent VDM-RT system class shown in section 2 while preserving the same run-time
properties. Instead of a single system class defining the deployment, our approach
uses a four level structure to define deployment, keeping a clear separation between the
model and the actual deployment. This allows tool automated exploration at all levels:

Abstract Software Architecture: Defines artifacts and how they depend on each other;
Abstract Hardware Architecture: Defines the abstract hardware architecture in terms

of nodes and communication channels, i.e. without speeds/capacities or policies;
Configuration: Defines deployment of artifacts presented in Abstract Software Archi-

tecture to nodes from the hardware present in the Abstract Hardware Architecture;
Deployment: Defines a concrete deployment using the Configuration; similar to the

constructor in the current system class.

For each of the levels above, a concrete definition and the relation between them
will be presented as VDM-SL types and functions in the following sections.

3.1 Abstract Software Architecture

The Abstract Software Architecture (ASA) is used to describe which application arti-
facts exist in the system and where inter-artifact calls occur. It represents the software
system at its most abstract point where only artifacts of applications are referred e.g.
mmi, radio and navigation from section 2. The ASA contains dependencies be-
tween the different artifacts representing the inter-artifact calls in the system. This de-
pendency description is used both (1) to check that a hardware architecture contains the
required communication channels and (2) for automatic exploration of hardware archi-
tectures fitting the software model. Listing 1.2 shows the VDM types used to represent
the ASA of a system.�
types
Artifact : seq of char

ASA ::

6 Kenneth Lausdahl and Augusto Ribeiro

artifacts : set of Artifact
dependencies : map Artifact to set of Artifact

inv mk_ASA(artifacts,dependencies) ==
dom dependencies subset artifacts
and
dunion rng dependencies subset artifacts
and
forall key in set dom dependencies &

key not in set dependencies(key);
� �
Listing 1.2. Abstract Software Architecture types.

The Artifact type denotes a named system instance variables (e.g. mmi); the arti-
facts set denotes the set of artifacts which can be deployed; the dependencies
map denotes the dependencies between the artifacts.

3.2 Abstract Hardware Architecture

From an abstract point of view, a computing system is no more than a set of processing
nodes which communicate via channels. We name this representation: Abstract Hard-
ware Architecture (AHA). Listing 1.3 presents VDM types capable of representing an
abstract hardware architecture.�
types
Node ::
id : nat1;

ComChannel ::
nodes : set of Node;

AHA ::
nodes : set of Node
channels : set of ComChannels

inv forall c in set channels & c.nodes subset of nodes;
� �
Listing 1.3. Abstract Hardware Architecture as a VDM type

A processing node is represented by Nodewhich has an identifier and a communication
channel is represented by ComChannel, which contains the set of nodes it connects.
AHA defines a hardware architecture containing several nodes and channels connecting
them. AHAs can either be automatically generated based on the maximum number of
artifacts in the system or manually specified which is often the desired solution for an
industry where existing PCBs are available from previous projects.

3.3 Configuration

A configuration describes how a system is deployed to an abstract architecture. This
allows a system to be deployed onto a hardware configuration without explicitly spec-

Automated Exploration of Alternative System Architectures with VDM-RT 7

ifying the limitations of the hardware like CPU speed and bus capacity. A configura-
tion defines a relation between artifacts from an ASA and the computing nodes from
an AHA. The dependencies stated by an ASA must be reflected in the communication
channels of the AHA for the configuration to be valid. This check is done by the function
checkDependencies. Listing 1.4 defines a configuration of an ASA to an AHA. A
configuration can be created either by automatic permutation of artifacts onto the nodes
of an AHA or by manually specifying the relations. The latter is the normal case for an
industry where specialized nodes such as processors with integrated GPS2 modules are
used, which will require a GPS artifact to be explicitly deployed to a specific node.�
types
NodeArtifactRelation : map Node to set of Artifact;

Configuration ::
asa : ASA
aha : AHA
relation : NodeArtifactRelation

inv mk_Configuration(asa,aha,relation) ==
checkDependencies(asa, aha, relation);
� �

Listing 1.4. Deployment Configuration

3.4 Deployment

The deployment of a system is the process of restricting the computational power of the
nodes and the communication channels. A node must be limited to the computational
power of a specific CPU with a maximum number of instructions it can perform per sec-
ond. The same applies to buses where the transfer rate is limited. Listing 1.5 shows the
Deployment type which represents a mapping between Nodes and ComChannels
to concrete CPUs and buses.�
Deployment ::
config : Configuration
buses : map ComChannel to BUS
cpus : map Node to CPU

inv mk_Deployment(config,buses,cpus) ==
(forall channel in set config.aha.channels &

channel in set dom buses)
and
(forall node in set config.aha.nodes & node in set dom cpus)
and card config.aha.channels = card dom buses
and card config.aha.nodes = card dom cpus;
� �

Listing 1.5. Specifies the type of each computational node and communication channel

2 Global Positioning System

8 Kenneth Lausdahl and Augusto Ribeiro

Computational nodes and communication channels are abstractions of the actual
physical implementation where a circuit board is manufactured, which among other
things consists of the main components CPUs and buses which VDM-RT can reason
about. In listing 1.6 two VDM types are listed. CPU represents a computational Node
where the node is limited from being infinitely fast to a specific frequency slowing down
the execution of instructions. The same applies to the BUS, which is a limited version
of the ComChannel, where a transmission speed limits the number of bytes which can
be transmitted per second.�
CPU ::
id : nat1
speed : nat1
brand : seq of char
scheduling : <FP> | <FCFS>;

BUS ::
id : nat1
speed : nat1
type : <FILO>;
� �

Listing 1.6. Hardware types

3.5 New Deployment Work-flow

To use the four layered separation described above some changes must be made to the
deployment work flow. However, not all of the above levels require the modeller’s direct
attention, since most of the changes are conceptual separations of system elements. It is
important to understand that the output of the separation proposed above can be mapped
to the current VDM-RT system class without losing details. The difference is that this
clear separation between the different levels, enables the modeller to do exploration at
all levels. It also enables tools to be developed to assist this process.

The work-flow in ordinary VDM-RT can be described with the following steps:

1. Defining the VDM-RT model.
2. Identifying the static artifacts of the model.
3. Defining the hardware nodes: CPU and BUS and instantiating the artifacts.
4. Deploying the artifacts to the CPUs.

This is currently all done in a single class called system with no clear indication
of what is artifacts and what is hardware and deployment.

The work-flow with the new sub divided structure:

Model development: The first step is to develop the actual VDM model as in the cur-
rent VDM-RT workflow.

Automated Exploration of Alternative System Architectures with VDM-RT 9

System configuration: The modeller configures the artifacts of the system as usual in
a VDM-RT system class.

Extract artifacts and dependencies: If all artifact relations are expressed as either ar-
tifact constructor arguments or parsed as arguments to operations on artifacts, then
this step can be automated. Artifacts will be extracted from the system class and
their dependencies from the system constructor, enabling an ASA to be created3:

Composing a new AHA: The ASA defines the artifacts and their required dependen-
cies while the AHA define an abstract hardware architecture which respects the
dependencies from the ASA extracted from the artifacts dependencies. Such an
AHA can either be automatically generated based on the ASA or it can be manu-
ally specified by the user.

Configuration: The configuration defines how each artifact is linked to a node of the
given AHA. This can be specified manually by the user or a range of configurations
can be generated from the pair (ASA, AHA).

Deployment: The final deployment is the limitation of an AHA. This can again be
specified by the user to a single fixed deployment or the user can enter a set of
possible CPUs which could be used per node allowing a range of deployments to
be generated to explore these different CPU limitations.

Evaluation: Finally, the model can be executed with a single specific deployment and
its system invariants can be checked either through post-analysis or at run-time both
leading to an accept / reject verdict of the tested deployment. This indicates to the
modeller if this configuration is acceptable to the system leaving the decision of
which to choose to the modeller.

The steps described above can be expressed through the formula 1.(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (1)

The arrow→∗ denotes that many elements can be generated with respect to the left
side of the arrow. In the first case one or more configurations can exist which configures
a particular pair of ASA and AHA. Each configuration defines how the ASA is mapped
onto the AHA but does not restrict the hardware in any way. Similar to the configuration,
one or more deployments can exist which restricts a particular configuration by limiting
each computational node to a specific frequency and each communication channel to a
specific speed. Finally it can be seen from the system in section 2 that the left side of
the formula below is equivalent to the information in the system class in VDM-RT.

4 The Exploration of Alternative System Architectures

Exploring alternative system architectures is supported by VDM-RT and in section 3 it
has been described how the process of deployment can be split up into levels which can
be explored for alternatives. The goal is to provide the means to answer the questions

3 In this paper we do not deal with references which can be passed between artifacts at run-time
which also leads to new dependencies.

10 Kenneth Lausdahl and Augusto Ribeiro

stated in the introduction. However because these questions are seen from the modellers
point of view, we will try to relate them to the levels of the formula 1 to make it easier
to describe how this work provides (partial) answers to these questions.

The requirements extracted from the questions are as follows:

– Exploring alternative artifact distribution on a fixed hardware configuration.
– Exploring alternative hardware configurations for an ASA.
– Exploring alternative deployment parameters for a fixed configuration.

The questions require the exploration to support different distribution of artifacts
on a fixed distributed hardware platform; the ability to explore parameters for a specific
hardware such as CPU capacity; and finally a way to validate such a system architecture.
Futhermore we can add the ability to generate hardware architectures, but this may be
mainly of academic value. The requirements stated above are covered in the following
subsections. In addition the validation is addressed in section 4.4.

4.1 Exploring Alternative Artifact Distribution On A Fixed Hardware
Configuration

To explore alternative artifact distribution, an ASA is required to obtain the artifacts and
their dependencies. Since the hardware configuration is fixed, an AHA is also provided
by the modeller. This gives the pair (ASA, AHA) as input to the exploration of alterna-
tive artifact distribution. Formula 2 illustrates where this takes place in the overall work
flow where the underlined part denotes what is produced. The result of the generation
of alternative distributions is a set of Configurations all for the same system.

(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (2)

Listing 1.7 shows the signature of a VDM function which produces the desired set
of configurations:�
createAltDisbs : ASA * AHA -> set of Configuration
createAltDisbs(asa, aha) == is not yet specified;
� �

Listing 1.7. Signature of a function for generation of Configurations from an ASA.

4.2 Exploring Alternative Hardware Configurations For An ASA

When the goal is to find the optimal hardware configuration for a given system it can
often be difficult and time consuming to create all possible combinations of nodes and
communication channels. It is however important to understand that this is possibly
only of academic value since industrial companies often have of-the-shelf hardware
platforms which they want to explore. AHAs can be generated from the number of

Automated Exploration of Alternative System Architectures with VDM-RT 11

unique artifacts from an ASA. The formula 3 shows where in the overall work flow this
exploration contributes again using the underlined part as the produced aspects.

(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (3)

A signature of the VDM function to create the AHAs is shown in listing 1.8. It takes
an ASA as input and returns a set of AHAs.�
createAHAs : ASA -> set of AHA
createAHAs(asa) ==
let maxNodes = card asa.artifacts
in
...
� �

Listing 1.8. Signature of a VDM function for the automatic AHA generation.

4.3 Exploring Alternative Deployment Parameters For A Fixed Configuration

Exploring alternative deployment parameters for an otherwise fixed system is one of
the most important requirements because this relates directly to the costs of the final
product. If a cheaper CPU can be used in mass production, money can be saved by the
manufacturer of such a system. Exploring alternative deployment parameters means that
one can come up with all possible limitations of the hardware, reducing either a CPUs
computational capacity or limiting the bandwidth of a bus. An unlimited range of such
deployments can be generated however this is not useful in practice since only a small
number of CPUs and buses can be used in a specific hardware topology. In most cases,
a PCB design already exists which supports a fixed number of different CPUs from a
specific family. Thus the exploration is based on knowing that a small list of possible
CPUs or buses are available to be used as nodes. The exploration generates a set of
deployments and takes an otherwise fixed system as input together with a set of avail-
able CPUs per node of the AHA and a set of available buses for each communication
channel. Formula 4 shows where in the overall work flow this takes place.

(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (4)

The signature of a VDM function is shown in listing 1.9 which takes a fixed con-
figuration of a system plus two maps where the available CPUs and BUSs are given for
the resources in the AHA.�
exploreDeployParams : Configuration *

map Node to set of CPU *

12 Kenneth Lausdahl and Augusto Ribeiro

map ComChannel to set of BUS
-> set of Deployment

exploreDeployParams(config, nCm, cBm) == is not yet specified;
� �
Listing 1.9. Signature of a VDM function for alternative deployment parameter exploration.

4.4 Evaluation Of The Architectures

The ability to automatically determine if a specific deployment is good enough is very
important now that we have presented the functionality to automatically generate al-
ternatives as early as the AHA in the work flow. The potentially results is a very large
number of deployments, since a split in the flow at an early stage doubles the output of
all later steps. Currently, the only way to determine if a deployment is “good enough”
is by manually inspecting the execution log through the graphical viewer named Real-
Time Log Viewer. This viewer is able to illustrate how the scheduler creates threads,
shifts them in and out in relation to time etc. To overcome the challenge of manual in-
spection work is being done in [11] to enable run-time checking of system invariants.
Such invariants can then express time constraints in the system, which is exactly what
is needed when deployments have to be validated. If the modeller provides system in-
variants expressing the critical time constraints of the model then the run-time checking
of these invariants will be able to tell us if a given deployment has not violated any
invariants and thus be accepted.

5 Case Study: In-car Radio Navigation

This case study is based on an already known case explored in both [3] and [13]. How
this new structure can be used to do deployment exploration will be presented. The new
way to express a system configuration is shown in listing 1.10, it can be seen that no
deployment is included within the system class. This is very similar to the system from
section 2.�
system RadNavSys
instance variables
-- create artifacts
static public mmi : MMI := new MMI();
static public radio : Radio := new Radio();
static public navigation : Navigation := new Navigation();

operations
public RadNavSys: () ==> RadNavSys
RadNavSys () ==
(navigation.setMmi(mmi);

radio.setMmi(mmi);
radio.setNavigation(navigation);
mmi.setRadio(radio);

Automated Exploration of Alternative System Architectures with VDM-RT 13

);
end RadNavSys
� �

Listing 1.10. In-Car-Navigation system.

A new grammar for deployment in VDM-RT is proposed in listing 1.11, allow-
ing the deployment elements: AHA, configuration and deployment to be specified. All
the elements can be generated through exploration as explained in section 4. The list-
ing 1.11 illustrates how the deployment of the in-car-navigation system can be done
with this new syntax. The deployment is specified with all elements, but without the
ASA, since it can automatically be extracted from the system class in listing 1.10. Any
of the blocks aha, configuration and deployment can be left empty in the
grammar, indicating that they should be automatically generated. However by explic-
itly specifying all blocks only a single deployment will exist as in the original system
definition from section 2.�
aha

Channel1 := {node1, node2, node3}

configuration

node1 := {mmi};
node2 := {radio}
node3 := {navigation}

deployment

node1 := CPU(200MHz, <FP>)
node2 := CPU(100MHz, <FP>)
node3 := CPU(1000MHz, <FP>)
Channel1 := BUS(72E3, <CSMACD>)
� �

Listing 1.11. New deployment specification for the In-Car-Navigation system

What if the deployment specified in listing 1.11 is an acceptable deployment but the
modeller likes to do future investigation through the third question: Is it possible to re-
place components by cheaper, less powerful, equivalents to save cost while maintaining
the required performance targets? One option is to try out deployments where one of
the nodes is limited to one of three different CPUs as shown in listing 1.12. It can be
seen that the grammar allows nodes to be defined with a set of CPUs instead of a single
CPU this allows the exploration to use permutations of CPUs for each node.�
deployment

node1 := {CPU(200MHz, <FP>),
CPU(100MHz, <FP>),

14 Kenneth Lausdahl and Augusto Ribeiro

CPU(50MHz, <FP>)}
node2 := CPU(100MHz, <FP>)
node3 := CPU(1000MHz, <FP>)
Channel1 := BUS(72E3, <FCFS>)
� �

Listing 1.12. Alternative deployment block for exploration of deployment parameters.

When the exploration is done for the deployment block as shown in listing 1.12,
three alternatives will be generated, one with each type of CPU. All these alternatives
can then automatically be validated against the same tests to see if all of them fulfils the
system invariant4. If so the modeller can freely decide which option is the best choice.

6 Concluding Remarks

Choosing the optimal architecture for a system is challenging, not only can it be difficult
to determine but VDM-RT currently lacks the ability to allow exploration of alternatives
in an efficient way without the need of duplicating the model. This work has proposed
a way to enable exploration through separation of model and deployment, where ex-
ploration is possible at all levels of the deployment process. The common questions a
modeller might ask when choosing a optimal architecture have been addressed and ex-
ploration functions proposed. We think that this work will help the system architect to
determine an optimal architecture for a given system by enabling easy automated explo-
ration. Such an exploration will be able to create all alternatives of AHA, Configuration
and deployments and evaluate them against system invariants. VDM-RT priority set-
tings for functions and operations has not been addressed in this work but will be future
investigated in the near future.

The plan is to implement the features described in this paper in the Overture plat-
form such that it can be exploited for automatic co-model analysis in the DESTECS
project as well. We expect that this will be completed before the end of 2011.

Acknowledgements

This work was partly supported by the EU FP7 DESTECS Project. We appreciate the
input we have had from the different partners on this work. In addition we would like
to thank Nick Battle for valuable input on this paper.

References

1. Bjørner, D., Jones, C. (eds.): The Vienna Development Method: The Meta-Language, Lec-
ture Notes in Computer Science, vol. 61. Springer-Verlag (1978)

2. Broenink, J.F., Larsen, P.G., Verhoef, M., Kleijn, C., Jovanovic, D., Pierce, K., F., W.: Design
support and tooling for dependable embedded control software. In: Proceedings of Serene
2010 International Workshop on Software Engineering for Resilient Systems. ACM (April
2010)

4 The system invariants are not included in this paper but can be found in [3].

Automated Exploration of Alternative System Architectures with VDM-RT 15

3. Fitzgerald, J.S., Larsen, P.G., Tjell, S., Verhoef, M.: Validation Support for Real-Time Em-
bedded Systems in VDM++. In: Cukic, B., Dong, J. (eds.) Proc. HASE 2007: 10th IEEE
High Assurance Systems Engineering Symposium. pp. 331–340. IEEE (November 2007)

4. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc

5. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in Software
Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU,
UK, Second edn. (2009), ISBN 0-521-62348-0

6. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://www.vdmbook.com

7. Hooman, J., Verhoef, M.: Formal semantics of a VDM extension for distributed embedded
systems. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality,
and Correctness, Essays in Honor of Willem-Paul de Roever. Lecture notes in Computer
Science, vol. 5930, pp. 142–161. Springer-Verlag (2010)

8. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edn. (1990), iSBN 0-13-880733-7

9. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

10. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating a Distributed
Real Time System using VDM. Submitted for publication (2011)

11. Ribeiro, A., Lausdahl, K., Larsen, P.G.: Run-Time Validation of Timing Constraints for
VDM-RT Models. Submitted for publication (2011)

12. Verhoef, M.: On the use of VDM++ for Specifying Real-Time Systems. In: Fitzgerald, J.S.,
Larsen, P.G., Plat, N. (eds.) Towards Next Generation Tools for VDM: Contributions to the
First International Overture Workshop, Newcastle, July 2005. pp. 26–43. School of Comput-
ing Science, Newcastle University, Technical Report CS-TR-969 (June 2006)

13. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.
Ph.D. thesis, Radboud University Nijmegen (2008), ISBN 978-90-9023705-3

14. Verhoef, M., Larsen, P.G.: Interpreting Distributed System Architectures Using VDM++ – A
Case Study. In: Sauser, B., Muller, G. (eds.) 5th Annual Conference on Systems Engineering
Research (March 2007), Available at http://www.stevens.edu/engineering/cser/

15. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147–162. Lecture Notes in Computer Science 4085 (2006)

http://www.vdmbook.com

	Automated Exploration of Alternative System Architectures with VDM-RT

