
Run-Time Validation of Timing Constraints for
VDM-RT Models

Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen

Aarhus School of Engineering, Dalgas Avenue 2, DK-8000 Aarhus C, Denmark,
{ari,kel,pgl}@iha.dk

Abstract. Development of distributed real-time embedded systems is often a
challenging task and validation of the timing behaviour of such systems is typ-
ically as important as its functional correctness. VDM-RT is a modelling lan-
guage with an executable subset that can be used to describe distributed real-
time embedded systems. In previous work [5], post-analysis of important timing
constraints was achieved by inspecting a log file that results from simulating a
VDM-RT model using VDMTools. In this paper we present how validation of
such timing constraints actually can be efficiently carried out during run-time
using the interpreter from the open source Overture/VDM tool suite.

Keywords: VDM-RT; real-time distributed embedded systems; timing proper-
ties validation

1 Introduction

Development of distributed real-time embedded systems is often a challenging task.
Typically, real-time embedded systems have timing constrains that should be respected
for the system to be considered useful. These timing constrains are obvious for a hard
real-time system where the failure to respond within a certain time interval can lead
to total system failure but even soft real-time systems can have time constrains. For
example, when a user presses the TV remote control to change channel, he expects the
channel on the TV to change in an acceptable amount of time.

Using modelling tools to gain better understanding of a system is seen as a good
practice [3]. By using simulation, one can gain confidence that a model is doing what
it is expected. By being able to define time constrains and validate these constrains in a
model during simulation, one could gain even more confidence.

VDM-RT is a modelling language that permits the specification of distributed real-
time systems which has an executable subset. In this article, we present a tool enhance-
ment for the VDM-RT interpreter [10] that extends the work presented in [5] and adds
the capability of defining timing constrains to a model and validate them during inter-
pretation.

This paper starts off with a short presentation of the relevant aspects in Section 2.
Afterwards Section 3 introduces a small case study for an in-car navigation and radio
system and illustrates how the existing tools can be used to provide a graphical overview
of the interpretation of such an example distributed over multiple CPUs. Then Section 4
introduces the notion of system-wide timing invariants suggested by this article. This

2 Ribeiro et al.

is followed by Section 5 illustrating how such timing invariants can be used concretely
in VDM-RT and how the tool support can be updated with visualisation of violation of
such timing invariants. Finally Section 6 provides a few concluding remarks about the
work presented in this article.

2 VDM-RT

The Vienna Development Method (VDM) [2, 8, 6] was originally developed at the IBM
laboratories in Vienna in the 1970s and as such it is one of the longest established formal
methods. VDM comes in three different flavours: VDM-SL [12] (VDM Specification
Language) an ISO Standard; VDM++ [7] an object oriented extension of VDM-SL that
supports concurrency; and more recently VDM-RT [14, 13], an extension to VDM++
to model distributed real-time embedded systems. VDM-RT is supported by Overture
Tool [9] and VDMTools [4]. Both tools includes an interpreter capable of running the
executable part of VDM-RT but the work described in this article is only built into
Overture.

VDM-RT includes the notion of a quantifiable time; there is a system clock which
is running from beginning till the end of interpretation. Currently, the maximum preces-
sion allowed in the interpreter is 1 nanosecond. It also contains the notion of processing
units; the built-in CPU class can be used to declare processing unit and its speed (in Hz);
different parts of the model are deployed to specified CPUs. CPUs can communicate
between themselves through buses. VDM-RT constructs take time to be interpreted, this
time is shorter or longer according to the CPU speed. Using the keywords cycles and
duration it is possible to influence how much time a construct takes to execute. Us-
ing cycles one can say how many CPU cycles an instruction will take to complete;
using this keyword will make the speed to complete an instruction inversely propor-
tional to the speed of the CPU. On the other hand, the keyword duration turns the
completion time of an instruction to a constant value; this can be useful to model, for
example, a IO access where it takes a constant time independent of the speed of the
CPU accessing it. There is also a special kind of CPU, which is present in all the VDM-
RT models implicitly, the virtual CPU (vCPU) which per default is infinitely fast and its
execution does not affect system timing. When a VDM-RT model is interpreted, a log
is produced in which all events related with operations and function calls, object and
threads creation, activation and deactivation that happened during the interpretation are
registered. This log can be visualized graphically like shown in Figure 2.

A special kind of predicates called permission predicates, can act as a guard to op-
erations and can be used to ensure synchronization of concurrent threads. Within these
predicates it is possible to use operation history guards. History guards denote the num-
ber of requests, activations and completions of the operations. For each of these possible
operation states, an event is generated in the log. The VDM-RT syntax to express these
events is #req for request, #act for activate and #fin for finish. The request event
indicates that the interpreter wishes to call the operation. The activate event indicates
that the requested method was actually activated, this distinction is made because there
might exist a delay between request and activation either due to a synchronization con-
dition in the operation or because the CPU executing the thread might not have enough

Run-Time Validation of Timing Constraints for VDM-RT Models 3

processing power. The finish event indicates that the operation has completed. The rel-
ative timing of these events are important in case timing requirements for the system
being modelled are needed.

3 Case study

In this section, we introduce a VDM-RT model and the associated existing tool support.
The idea behind the model is to describe an in-car navigation radio and check if it is
possible to validate its timing requirements. An overview of the system is presented in
Figure 1. The environment has three types of interaction with the system, it is possible

Fig. 1. Overview of the In-car Radio Navigation System

for the system to receive new TMC broadcasts (Traffic Message Channel) and adjust the
volume (the volume down interaction is not presented in Figure 1 because it is similar
to adjusting the volume up). The system is divided into three major components, the
man-machine interface (MMI) in CPU1, the radio in CPU2 and the navigation system
in CPU3. All these CPUs are connected through a common bus (BUS1). Finally all
the CPUs have a connection through the vBUS to the vCPU where the environment is
present. Listing 1.1 shows how the Radio class is modelled in VDM-RT.�
class Radio

values
public MAX : nat = 10;

instance variables
public volume : nat := 0;

4 Ribeiro et al.

operations
async public AdjustVolumeUp : () ==> ()
AdjustVolumeUp () ==
(cycles (1E6) skip;
if volume < MAX
then (volume := volume + 1;

RadNavSys‘mmi.UpdateScreen(1)));

async public HandleTMC: () ==> ()
HandleTMC () ==
(cycles (1E6) skip;

RadNavSys‘navigation.DecodeTMC());

end Radio
� �
Listing 1.1. Snippet of the Radio class

It has 3 operations (AdjustVolumeDown is not presented), the ones to adjust volume
and one that handles the incoming TMC signal. The operations illustrate the use of the
keyword cycles, in this case it means that 106 cycles (1E6) are used in the computation
of the operation. The rest is on purpose kept very simple, the AdjustVolume oper-
ations change the volume if they did not reach the limit and notifies the screen to do
an update. The HandleTMC, relays the decoding of the TMC signal to the navigation
unit.

Currently, the tool support available is capable of producing a detailed log of the
execution of a VDM-RT model. There is also a tool, the RTLogViewer that allows
graphical visualization of such logs. Figure 2 shows RTLogViewer at work. The log

Fig. 2. Log showing one of the executions of the model

Run-Time Validation of Timing Constraints for VDM-RT Models 5

contains details such as when certain parts of the model were active and which calls
were made at a certain time. Note that the time unit used on the log is nanoseconds (ns)
as opposed to the time unit used throughout the rest of this article which is milliseconds
(ms).

A number of system-wide timing invariants need to be added to the in-car navigation
system in order to provide a good user interface experience.

C1: A volume change must be reflected in the display within 35 ms.
C2: The screen should be updated no more than once every 500 ms.
C3: If the volume is to be adjusted upwards and it is not currently at the maximum, the

audible change should occur within 100 ms.

It can be argued that C1 and C2 are clashing since we demand the screen to update
within 35ms after a key press (in C1) and that the screen only updates each 500ms (in
C2) but this was chosen on purpose for testing reasons.

4 Timing Invariants

Timing invariants are logical statements that allow a modeller to formulate system-
wide timing properties, these properties indicate a relation between two events. These
properties have the form of a predicate over events and operate in a three value logic
(true, false and unknown). Because these properties are to be verified in a VDM-RT
environment we can use in their definition the notion of time. Informally, a property
consists of a 6-tuple containing at least the following1:

A name: the property name (P);
A relation: a relation between the two events and a time interval (@);
A trigger: an event that triggers the validation of a conjecture (et);
An ending: when the ending event happens, the conjecture can be checked for satisfi-

ability (ee);
A time interval: the time interval used in the property (i);
A default evaluation: the default evaluation (true or false) to be returned if the ending

event never occurs (d).

We attempt to formally define a property P. To assist us in this task we need the function
time (t) that returns an event time of occurrence.

t(e) =

{
time if e occured
∅ if e did not occur

Where time is the systems time of the occurrence of event e. If both events (trigger and
ending) occurred then t(ee) ≥ t(et). The current system time is denoted by curr. As
expected, it is only possible to evaluate if a property holds if the trigger event et occurs
but it might be possible to evaluate it before the ending event ee occurs or even if it does
not occur at all.

1 We say at least because extended versions of the property will appear.

6 Ribeiro et al.

P(@, ee, et, i, d) ≡
{
t(ee)− t(et) @ i if t(ee) 6= ∅ ∧ t(et) 6= ∅
d if t(ee) = ∅ ∧ curr− t(et) > i

(1)

Where the kind of the property in question determines which relation is (@) and the de-
fault evaluation (d). Because simulation is time framed, it can happen that it terminates
before a property can be properly evaluated (the case where t(ee) = ∅∧curr− t(et) ≤
i), when this happens the property evaluation is deemed inconclusive.

Now that we have the generic property formally defined, we can by specifying P, @
and d in definition 1 derive at least three interesting properties.

1. Deadline Met: A deadline by definition is a time by which something must be
finished. In real-time embedded systems there is typically deadlines that must be
respected from when an event happens to its response. In our terminology, it means
that the ending event must happen within a certain timeframe from the trigger event.
We instantiate 2 and fixate P, @ and d for the deadlineMet property in the following
way:

deadline(≤, e1, e2, i, false) (2)

Just for better comprehension, the expanded version of definition 2 is presented
below:

deadline(e1, e2, i) ≡
{
t(ee)− t(et) ≤ i if t(ee) 6= ∅ ∧ t(et) 6= ∅
false if t(ee) = ∅ ∧ curr− t(et) > i

(3)
2. Separate: Intuitively, separation properties describe a minimum separation be-

tween events if the second event occur at all and it can be defined through spec-
ifying 1 in the following way:

separate(>, e1, e2, i, true) (4)

3. Separate Required: Intuitively, required separations are separations in which the
second event is required to occur after the minimum separation. Again we define it
by specifying 1:

separateReq(>, e1, e2, i, false) (5)

There is only a subtle difference between definitions 4 and 5. The default evaluation
ensures the desired result when evaluating the separation properties.
A peculiar case happens when the ending event does not occur while interpreting a
model. Since a model is simulated within a time range (tn), the ending event could
potentially happen some time in the future after the simulation has stopped. In this
case, the property would evaluate to inconclusive if tn − t(et) ≤ i or to the default
evaluation (false) otherwise. This case requires attention by the modeller because
it is not possible to tell if the ending event would happen in the future and change
the evaluation of the property.

Run-Time Validation of Timing Constraints for VDM-RT Models 7

4.1 Events

The basic concept of properties have been described and it was mentioned that proper-
ties are predicates over events but no definition of event has been provided yet. In this
section we will provide a formalization of the notion of events as used in the timing
invariants. Events are defined as predicates over certain occurrences that happen in the
model during the interpretation. Events can be divided into two types:

Operation events: the VDM-RT semantics defines three identifiable states of an oper-
ation: request, when an operation is registered to be invoked; activation, when an
operation is really invoked (the time of request and activation can be different for
several reasons); and finally finished, when an operation call is completed.
An operation event is an event tied to one of these operation states either at class
or object level2. So basically when an event is associated with an operation state
and a class, this event is registered whenever any object of this class invoking the
operation enters that state. On the other hand, an event associated with an object is
only registered when the specific object enters that state. Assuming that opStateSet
is a set that contains tuples of the form (object, op, state) which is populated with
the operations that are in a certain state in an object for the current system time
(curr). We formalize the object level event as:

objOpEvent(object, op, state) ≡ (object, op, state) ∈ opStateSet (6)

The class level event can be formalized with the help of definition 6 as:

classOpEvent(class, op, state) ≡
∃(obj, op, state) ∈ (opStateSet).obj ∈ class ∧ objOpEvent(obj, op, state)

(7)

Predicate events: this kind of events is associated with a predicate, the event occurs
when the predicate is true. These predicates must have as argument at least one
instance variable that is accessible from the system class, i.e. any variable that is
accessible after initialization of the system. Assuming a predicate p with n argu-
ments we formalize predicate events as:

predEvent(p, a1, . . . , an) ≡ p(a1, . . . , an) (8)

At least one instance variable has to be used as argument because predicate events
are only evaluated in case of a variable state change. The reason for this is that
evaluated all predicate events at all times could be computationally expensive. By
tying a predicate with a variable state change, the number of times the predicate is
evaluated is possibly highly reduced.

Timing invariants contain two events, a trigger and an ending, as shown in Section 4.
Each trigger and ending event can be formed by a combination of operation and predi-
cate event. Here follows the definition of a timing invariant event (trigger or ending):

timInvEvent(opEv, predEv) ≡

opEv if predEv is not defined
predEv if opEv is not defined
opEv ∧ predEv otherwise

(9)

2 For practical reasons we limit the object level to instance variables present in the system class

8 Ribeiro et al.

If both events are defined, the opEv takes precedence over the predEv since it only
makes sense to calculate the later if the first one evaluates to true.

4.2 Invariant Instances

A timing invariant typically needs to be validated more than once for each simula-
tion, for each time the trigger event occurs. These are denominated invariant instances
because they are instances of the same invariant triggered in different situations. The
lifetime of a single instance of an invariant is described below:

1. Before the trigger event occurs, the instance does not exist;
2. If at a certain point in time, the trigger event happens, an instance of the invariant

is created in which the time of the trigger event is registered. We denominate these
instances active;

3. If the ending event occurs, the time of its occurrence will be registered in all3 the
instances of the invariant. The instances are marked as ended and its evaluation can
be made. We denominate these instances decommissioned. This decommissioning
policy is called non-selective;

4. If an instance does not hold it remains saved for later display.

Invariant instances represent fully specified versions of the timing invariants presented
in definition 1 where all the free variables have been fixed. An arbitrary number of
instances of an invariant can exist at a certain point in time during simulation.

Assuming timInv is the set of defined timing invariants, actInst is the set of active
instances, decoInst the set of decommissioned instances we can define the transition of
states at a given time. Definition 10 describes how invariant instances are created from
invariant definitions. The function isTrigger checks if the trigger event of an invariant
is occurring. The function createInst creates an invariant instance from a definition and
registers it in the current time.

∀inv ∈ timInv.isTrigger(timInv) =⇒ createInst(timInv) ∪ actInst (10)

Definition 11 describes how an instance passes from active to the decommissioned state.
Function isEnding is analogous to isTrigger but for the ending event.

∀inv ∈ timInv, inst ∈ instances(inv, actInv).isEnding(timInv) =⇒
actInst \ inst ∧ (¬isSatisfied(inst) =⇒ inst ∪ decoInst) (11)

The function isSatisfied checks if an instance of the invariant holds or not. By following
this strategy, in the end of an interpretation we will end up with the invariant instances
that did not hold in the set decoInst.

The matching policy The non-selective decommissioning policy of invariant instances
might not be the proper solution for all cases. With this policy it is not possible to
describe that an ending event can only decommission one instance. Assuming that et

3 Further in this section another way of decommissioning the instances is described.

Run-Time Validation of Timing Constraints for VDM-RT Models 9

and ee are trigger and ending events respectively, for a certain invariant P. Considering
the following string of events:

et, et, ee (12)

With the policy described before, the following would happen: two instances of the
invariant P would be created, one for each et then both instances would be decommis-
sioned by the only ee. One can think of another policy that instead of keeping a set
of active instances, keeps a sequence. In this mode, we demand that the trigger and
ending events happen in couples for the invariants to be decommissioned. This kind
of decommissioning uses a matching policy. By doing this, if the string of events pre-
sented in definition 12 ocurrs, one instance of the invariant will still be active. Both
policies are possible to be implemented and we decided to delegate the policy selection
by extending with one more argument to the timing invariant presented in definition 1.

P(@, ee, et, i, d,m) (13)

The boolean argument m means match and decides if the decommissioning of instances
is made according to the matching policy.

Other policies In Section 4.1, operation events over classes were discussed. Defining
a class operation event can lead to the situation where an invariant is triggered by one
object of that class and ended by another object of the same class. In certain situations
this might not be exactly what the modeller is looking for. Hence one more possible
policy of decommissioning of instances is a policy that demands that the trigger and the
ending event occur on the same object. Another restriction that might appear natural is
to demand that the trigger and ending event occur in the same thread. The choice of the
policies is model specific or even invariant specific, it depends on what is the modeller
looking for in each individual case.

One more possible extension to definition 13 is to add extra fields to enable more
policies. The definition extension will not be made here since these are presented here
merely for completion and discussion sake. All the mentioned policies in this paper
are possible to implement and they have been present in the development phase of the
prototype. The final decommissioning policy chosen for the prototype was the matching
policy simply because it was the most appropriate fit for the example we chose.

5 Run-Time Invariant Checking

A part of what was described in Section 4 was implemented as a prototype as part of
this work. The prototype has been built on top of the open-source VDM-RT interpreter
VDMJ [1]. As the validation is made during run-time, an option could be added to the
interpreter to stop the execution when an invariant is violated. The prototype merely
logs the violations which then can be analysed post to simulation completion.

We defined the concrete syntax for the timing invariants in VDM-RT as:�
property(trigger,ending,interval);
� �

10 Ribeiro et al.

This syntax is open to discussion and it might need to be extended if the policies need
to be expressed in it. The time interval has also some novelty that is noteworthy, it is
now possible to specify the time unit used in the interval (s,ms,ns). The concrete syntax
of the time interval definition is the following:�
interval = nat1 ("s" | "ms" | "ns")
� �
This notation is used in the examples that appear in the next subsection.

5.1 Concrete Invariants

The invariants first mentioned in Section 3 can now be expressed in the defined syntax.

C1: A volume change must be reflected in the display within 35 ms.�
deadlineMet(
#fin(Radio‘AdjustVolumeUp),
#fin(MMI‘UpdateScreen),
35 ms)
� �

C2: The screen should be updated no more than once every 500 ms.�
separate(
#fin(MMI‘UpdateScreen),
#fin(MMI‘UpdateScreen),
500 ms)
� �

C3: If the volume is to be adjusted upwards and it is not currently at the maximum, the
audible change should occur within 100 ms.�
deadlineMet(
(#req(MMI‘HandleKeyPressUp),
RadNavSys‘radio.volume < Radio‘MAX

),
#fin(MMI‘AdjustVolumeUp),
100 ms)
� �

The definitions are pretty self-explanatory, #req and #fin refer to the operation states
request and finish respectively. The operation events are all defined over classes and one
instance variable event is defined in C3. C3 trigger is a composite of a operation and a
variable trigger.

Run-Time Validation of Timing Constraints for VDM-RT Models 11

5.2 System Class Extension

We recommend an extension to the system where the modeller could specify the system
timing properties. We recommend such extension because these properties could be
seen as a kind of system-wide timing invariants which must hold in order for the system
to behave correctly. The only difference from traditional VDM invariants is that the
violation of these would not cause the interpretation to stop but instead report a timing
invariant violation which could after be inspected by the modeller.�
system Sys
...
timing invariants

deadlineMet(evTrigger1, evEnder1, 400 ms);
...
separate(evTrigger2, evEnder2, 1000 ms);

end Sys
� �
With the facilities provided by [11], it is possible to easily test the system in dif-

ferent architectures. By coupling this idea with the recorded time invariants in the sys-
tem class, it is possible to easily spot which architectures respect the time behavior
specification and discard the ones which do not.

5.3 Results

Figure 3 shows the resulting log of an interpretation of the model with the timing in-
variants. We can see that both C1 and C3 hold through the interpretation while C2 is
violated twice. The log shows which invariants were violated or not and for the ones
that were violated, it indicates at which point of time it happened and the responsible
thread. In the graphical log representation, the places of the violation of C2 are also
marked with a circle in red. Having such information readily available and facilities to
go to critical points avoids a painstakingly examination of the RTLogs by the modeler,
greatly enhancing his ability to reason about the model.

The results of invariants test might not be as simple as only Pass or Not Pass, like
mentioned in Section 4 results might be Inconclusive or the invariant might not even be
activated once because the trigger event has not occured at all in the chosen scenario,
leading to a Not Activated result.

6 Concluding Remarks

In this paper we have presented an extension of the VDM-RT notation and the asso-
ciated interpreter to make validation of system timing properties during run-time that
builds up on the theory presented in [5]. The intention of this paper is to both demon-
strate that such validation is possible to do at run-time and also to form basis for dis-
cussion on the inclusion of timing invariants in the VDM-RT language as a form of

12 Ribeiro et al.

Fig. 3. Timing invariants violations represented in the logger

recording system-wide invariants related with timing which are usually very important
when specifying a real-time system. The discussion could also be extended to which
kind of the properties should be available for specifying these timing invariants or if
their semantics needs to be adjusted. Finally we hope that the workshop can clarify
whether it would be worthwhile for the user to be able to select whether violations of
timing constraints should be logged or treated as run-time errors.

Acknowledgements

This work was partly supported by the EU FP7 DESTECS Project. We appreciate the
input we have had from the different partners on this work. In addition we would like
to thank Nick Battle and the anonymous referees for valuable input on this paper.

References

1. Battle, N.: VDMJ User Guide. Tech. rep., Fujitsu Services Ltd., UK (2009)
2. Bjørner, D.: The Vienna Development Method: Software Abstraction and Program Synthe-

sis, Lecture Notes in Computer Science, vol. 75: Math. Studies of Information Processing.
Springer-Verlag (1979)

3. Fitzgerald, J.S., Larsen, P.G.: Balancing Insight and Effort: the Industrial Uptake of Formal
Methods. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-
Time Systems, Essays in Honour of Dines Bjørner and Chaochen Zhou on the Occasion of
Their 70th Birthdays. pp. 237–254. Springer, Lecture Notes in Computer Science, Volume
4700 (September 2007), iSBN 978-3-540-75220-2

Run-Time Validation of Timing Constraints for VDM-RT Models 13

4. Fitzgerald, J.S., Larsen, P.G.: Triumphs and Challenges for the Industrial Application of
Model-Oriented Formal Methods. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proc.
2nd Intl. Symp. on Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA 2007) (2007), also Technical Report CS-TR-999, School of Computing Science,
Newcastle University

5. Fitzgerald, J.S., Larsen, P.G., Tjell, S., Verhoef, M.: Validation Support for Real-Time Em-
bedded Systems in VDM++. In: Cukic, B., Dong, J. (eds.) Proc. HASE 2007: 10th IEEE
High Assurance Systems Engineering Symposium. pp. 331–340. IEEE (November 2007)

6. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc

7. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://www.vdmbook.com

8. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edn. (1990), iSBN 0-13-880733-7

9. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

10. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating a Distributed
Real Time System using VDM. Submitted for publication (2011)

11. Lausdahl, K., Ribeiro, A.: Automated Exploration of Alternative System Architectures with
VDM-RT. In: Submitted for publication (2011)

12. P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H. Toetenel and D. J. Andrews and
J. Dawes and G. Parkin and others: Information technology – Programming languages, their
environments and system software interfaces – Vienna Development Method – Specification
Language – Part 1: Base language (December 1996)

13. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.
Ph.D. thesis, Radboud University Nijmegen (2008), ISBN 978-90-9023705-3

14. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147–162. Lecture Notes in Computer Science 4085 (2006)

